32 lines
851 B
Text
32 lines
851 B
Text
|
{-|
|
||
|
`partition` divides a `List` of elements into those that satisfy a predicate
|
||
|
and those that do not
|
||
|
-}
|
||
|
let Partition
|
||
|
: Type → Type
|
||
|
= λ(a : Type) → { true : List a, false : List a }
|
||
|
|
||
|
let partition
|
||
|
: ∀(a : Type) → (a → Bool) → List a → Partition a
|
||
|
= λ(a : Type) →
|
||
|
λ(f : a → Bool) →
|
||
|
λ(xs : List a) →
|
||
|
List/fold
|
||
|
a
|
||
|
xs
|
||
|
(Partition a)
|
||
|
( λ(x : a) →
|
||
|
λ(p : Partition a) →
|
||
|
if f x
|
||
|
then { true = [ x ] # p.true, false = p.false }
|
||
|
else { true = p.true, false = [ x ] # p.false }
|
||
|
)
|
||
|
{ true = [] : List a, false = [] : List a }
|
||
|
|
||
|
let example0 =
|
||
|
assert
|
||
|
: partition Natural Natural/even [ 0, 1, 2, 3 ]
|
||
|
≡ { true = [ 0, 2 ], false = [ 1, 3 ] }
|
||
|
|
||
|
in partition
|