Several fixes and changes:

- isort fixes
- flake8 fixes
- fixed bug of getting duplicated hashes because of sending channels in parallel.
- fixed bug of assigning matches to one offset when the same hash is present in several offsets of a song.
- added type hints and docstring for almost everything.
- added code to list fingerprinted songs in the database.
- added code to delete songs from the database.
- split time in several times: fingerprint time, query time and align time.
- turned the list generator into lists (necessary for split times)
- changed dejavu response.
- added two types of confidences, one that is based on the hashes matched vs the hashes in the db, and another one that is hashes matched vs the hashes from the input song.
- refactored the logic to return more than one result.
This commit is contained in:
mrepetto 2019-10-09 19:22:25 -03:00
parent 78b64c8c03
commit e6b5976e40
15 changed files with 495 additions and 296 deletions

View file

@ -1,12 +1,12 @@
import argparse
import json
from os.path import isdir
import sys
from argparse import RawTextHelpFormatter
from os.path import isdir
from dejavu import Dejavu
from dejavu.logic.recognizer.microphone_recognizer import MicrophoneRecognizer
from dejavu.logic.recognizer.file_recognizer import FileRecognizer
from dejavu.logic.recognizer.microphone_recognizer import MicrophoneRecognizer
DEFAULT_CONFIG_FILE = "dejavu.cnf.SAMPLE"
@ -41,7 +41,7 @@ if __name__ == '__main__':
'--fingerprint /path/to/directory')
parser.add_argument('-r', '--recognize', nargs=2,
help='Recognize what is '
'playing through the microphone\n'
'playing through the microphone or in a file.\n'
'Usage: \n'
'--recognize mic number_of_seconds \n'
'--recognize file path/to/file \n')

View file

@ -2,13 +2,19 @@ import multiprocessing
import os
import sys
import traceback
from itertools import groupby
from time import time
from typing import Dict, List, Tuple
import dejavu.logic.decoder as decoder
from dejavu.base_classes.base_database import get_database
from dejavu.config.settings import (CONFIDENCE, DEFAULT_FS,
DEFAULT_OVERLAP_RATIO, DEFAULT_WINDOW_SIZE,
FIELD_FILE_SHA1, OFFSET, OFFSET_SECS,
SONG_ID, SONG_NAME, TOPN)
from dejavu.config.settings import (DEFAULT_FS, DEFAULT_OVERLAP_RATIO,
DEFAULT_WINDOW_SIZE, FIELD_FILE_SHA1,
FIELD_TOTAL_HASHES,
FINGERPRINTED_CONFIDENCE,
FINGERPRINTED_HASHES, HASHES_MATCHED,
INPUT_CONFIDENCE, INPUT_HASHES, OFFSET,
OFFSET_SECS, SONG_ID, SONG_NAME, TOPN)
from dejavu.logic.fingerprint import fingerprint
@ -27,9 +33,13 @@ class Dejavu:
self.limit = self.config.get("fingerprint_limit", None)
if self.limit == -1: # for JSON compatibility
self.limit = None
self.get_fingerprinted_songs()
self.__load_fingerprinted_audio_hashes()
def get_fingerprinted_songs(self):
def __load_fingerprinted_audio_hashes(self) -> None:
"""
Keeps a dictionary with the hashes of the fingerprinted songs, in that way is possible to check
whether or not an audio file was already processed.
"""
# get songs previously indexed
self.songs = self.db.get_songs()
self.songhashes_set = set() # to know which ones we've computed before
@ -37,7 +47,27 @@ class Dejavu:
song_hash = song[FIELD_FILE_SHA1]
self.songhashes_set.add(song_hash)
def fingerprint_directory(self, path, extensions, nprocesses=None):
def get_fingerprinted_songs(self) -> List[Dict[str, any]]:
"""
To pull all fingerprinted songs from the database.
:return: a list of fingerprinted audios from the database.
"""
return self.db.get_songs()
def delete_songs_by_ids(self, song_ids: List[int]) -> None:
"""
Deletes all audios given their ids.
:param song_ids: song ids to delete from the database.
"""
self.db.delete_songs_by_ids(song_ids)
def fingerprint_directory(self, path: str, extensions: str, nprocesses: int = None) -> None:
"""
Given a directory and a set of extensions it fingerprints all files that match each extension specified.
:param path: path to the directory.
:param extensions: list of file extensions to consider.
:param nprocesses: amount of processes to fingerprint the files within the directory.
"""
# Try to use the maximum amount of processes if not given.
try:
nprocesses = nprocesses or multiprocessing.cpu_count()
@ -61,7 +91,7 @@ class Dejavu:
worker_input = list(zip(filenames_to_fingerprint, [self.limit] * len(filenames_to_fingerprint)))
# Send off our tasks
iterator = pool.imap_unordered(_fingerprint_worker, worker_input)
iterator = pool.imap_unordered(Dejavu._fingerprint_worker, worker_input)
# Loop till we have all of them
while True:
@ -76,25 +106,31 @@ class Dejavu:
# Print traceback because we can't reraise it here
traceback.print_exc(file=sys.stdout)
else:
sid = self.db.insert_song(song_name, file_hash)
sid = self.db.insert_song(song_name, file_hash, len(hashes))
self.db.insert_hashes(sid, hashes)
self.db.set_song_fingerprinted(sid)
self.get_fingerprinted_songs()
self.__load_fingerprinted_audio_hashes()
pool.close()
pool.join()
def fingerprint_file(self, filepath, song_name=None):
songname = decoder.path_to_songname(filepath)
song_hash = decoder.unique_hash(filepath)
song_name = song_name or songname
def fingerprint_file(self, file_path: str, song_name: str = None) -> None:
"""
Given a path to a file the method generates hashes for it and stores them in the database
for later being queried.
:param file_path: path to the file.
:param song_name: song name associated to the audio file.
"""
song_name_from_path = decoder.get_audio_name_from_path(file_path)
song_hash = decoder.unique_hash(file_path)
song_name = song_name or song_name_from_path
# don't refingerprint already fingerprinted files
if song_hash in self.songhashes_set:
print(f"{song_name} already fingerprinted, continuing...")
else:
song_name, hashes, file_hash = _fingerprint_worker(
filepath,
song_name, hashes, file_hash = Dejavu._fingerprint_worker(
file_path,
self.limit,
song_name=song_name
)
@ -102,117 +138,115 @@ class Dejavu:
self.db.insert_hashes(sid, hashes)
self.db.set_song_fingerprinted(sid)
self.get_fingerprinted_songs()
self.__load_fingerprinted_audio_hashes()
def find_matches(self, samples, Fs=DEFAULT_FS):
def generate_fingerprints(self, samples: List[int], Fs=DEFAULT_FS) -> Tuple[List[Tuple[str, int]], float]:
f"""
Generate the fingerprints for the given sample data (channel).
:param samples: list of ints which represents the channel info of the given audio file.
:param Fs: sampling rate which defaults to {DEFAULT_FS}.
:return: a list of tuples for hash and its corresponding offset, together with the generation time.
"""
t = time()
hashes = fingerprint(samples, Fs=Fs)
return self.db.return_matches(hashes)
fingerprint_time = time() - t
return hashes, fingerprint_time
def align_matches(self, matches, topn=TOPN):
def find_matches(self, hashes: List[Tuple[str, int]]) -> Tuple[List[Tuple[int, int]], Dict[str, int], float]:
"""
Finds the corresponding matches on the fingerprinted audios for the given hashes.
:param hashes: list of tuples for hashes and their corresponding offsets
:return: a tuple containing the matches found against the db, a dictionary which counts the different
hashes matched for each song (with the song id as key), and the time that the query took.
"""
t = time()
matches, dedup_hashes = self.db.return_matches(hashes)
query_time = time() - t
return matches, dedup_hashes, query_time
def align_matches(self, matches: List[Tuple[int, int]], dedup_hashes: Dict[str, int], queried_hashes: int,
topn: int = TOPN) -> List[Dict[str, any]]:
"""
Finds hash matches that align in time with other matches and finds
consensus about which hashes are "true" signal from the audio.
Returns a list of dictionaries (based on topn) with match information.
:param matches: matches from the database
:param dedup_hashes: dictionary containing the hashes matched without duplicates for each song
(key is the song id).
:param queried_hashes: amount of hashes sent for matching against the db
:param topn: number of results being returned back.
:return: a list of dictionaries (based on topn) with match information.
"""
# align by diffs
diff_counter = {}
largest_count = 0
# count offset occurrences per song and keep only the maximum ones.
sorted_matches = sorted(matches, key=lambda m: (m[0], m[1]))
counts = [(*key, len(list(group))) for key, group in groupby(sorted_matches, key=lambda m: (m[0], m[1]))]
songs_matches = sorted(
[max(list(group), key=lambda g: g[2]) for key, group in groupby(counts, key=lambda count: count[0])],
key=lambda count: count[2], reverse=True
)
# TODO: review logic to get topn results.
for tup in matches:
sid, diff = tup
if diff not in diff_counter:
diff_counter[diff] = {}
if sid not in diff_counter[diff]:
diff_counter[diff][sid] = 0
diff_counter[diff][sid] += 1
if diff_counter[diff][sid] > largest_count:
largest_count = diff_counter[diff][sid]
# create dic where key are songs ids
songs_num_matches = {}
for dc in diff_counter:
for sid in diff_counter[dc]:
match_val = diff_counter[dc][sid]
if (sid not in songs_num_matches) or (match_val > songs_num_matches[sid]['value']):
songs_num_matches[sid] = {
'sid': sid,
'value': match_val,
'largest': dc
}
# use dicc of songs to create an ordered (descending) list using the match value property assigned to each song
songs_num_matches_list = []
for s in songs_num_matches:
songs_num_matches_list.append({
'sid': s,
'object': songs_num_matches[s]
})
songs_num_matches_list_ordered = sorted(songs_num_matches_list, key=lambda x: x['object']['value'],
reverse=True)
# iterate the ordered list and fill results
songs_result = []
for s in songs_num_matches_list_ordered:
# get expected variable by the original code
song_id = s['object']['sid']
largest = s['object']['largest']
largest_count = s['object']['value']
# extract identification
for song_id, offset, _ in songs_matches[0:topn]: # consider topn elements in the result
song = self.db.get_song_by_id(song_id)
if song:
# TODO: Clarify what `get_song_by_id` should return.
songname = song.get(SONG_NAME, None)
# return match info
nseconds = round(float(largest) / DEFAULT_FS *
DEFAULT_WINDOW_SIZE *
DEFAULT_OVERLAP_RATIO, 5)
song_name = song.get(SONG_NAME, None)
song_hashes = song.get(FIELD_TOTAL_HASHES, None)
nseconds = round(float(offset) / DEFAULT_FS * DEFAULT_WINDOW_SIZE * DEFAULT_OVERLAP_RATIO, 5)
hashes_matched = dedup_hashes[song_id]
song = {
SONG_ID: song_id,
SONG_NAME: songname.encode("utf8"),
CONFIDENCE: largest_count,
OFFSET: int(largest),
SONG_NAME: song_name.encode("utf8"),
INPUT_HASHES: queried_hashes,
FINGERPRINTED_HASHES: song_hashes,
HASHES_MATCHED: hashes_matched,
# Percentage regarding hashes matched vs hashes from the input.
INPUT_CONFIDENCE: round(hashes_matched / queried_hashes, 2),
# Percentage regarding hashes matched vs hashes fingerprinted in the db.
FINGERPRINTED_CONFIDENCE: round(hashes_matched / song_hashes, 2),
OFFSET: offset,
OFFSET_SECS: nseconds,
FIELD_FILE_SHA1: song.get(FIELD_FILE_SHA1, None).encode("utf8")
}
songs_result.append(song)
# only consider up to topn elements in the result
if len(songs_result) > topn:
break
return songs_result
def recognize(self, recognizer, *options, **kwoptions):
def recognize(self, recognizer, *options, **kwoptions) -> Dict[str, any]:
r = recognizer(self)
return r.recognize(*options, **kwoptions)
def _fingerprint_worker(filename, limit=None, song_name=None):
@staticmethod
def _fingerprint_worker(arguments):
# Pool.imap sends arguments as tuples so we have to unpack
# them ourself.
try:
filename, limit = filename
file_name, limit = arguments
except ValueError:
pass
songname, extension = os.path.splitext(os.path.basename(filename))
song_name = song_name or songname
channels, fs, file_hash = decoder.read(filename, limit)
result = set()
song_name, extension = os.path.splitext(os.path.basename(file_name))
fingerprints, file_hash = Dejavu.get_file_fingerprints(file_name, limit, print_output=True)
return song_name, fingerprints, file_hash
@staticmethod
def get_file_fingerprints(file_name: str, limit: int, print_output: bool = False):
channels, fs, file_hash = decoder.read(file_name, limit)
fingerprints = set()
channel_amount = len(channels)
for channeln, channel in enumerate(channels, start=1):
if print_output:
print(f"Fingerprinting channel {channeln}/{channel_amount} for {file_name}")
for channeln, channel in enumerate(channels):
# TODO: Remove prints or change them into optional logging.
print(f"Fingerprinting channel {channeln + 1}/{channel_amount} for {filename}")
hashes = fingerprint(channel, Fs=fs)
print(f"Finished channel {channeln + 1}/{channel_amount} for {filename}")
result |= set(hashes)
return song_name, result, file_hash
if print_output:
print(f"Finished channel {channeln}/{channel_amount} for {file_name}")
fingerprints |= set(hashes)
return fingerprints, file_hash

View file

@ -1,6 +1,6 @@
import abc
import importlib
from typing import Dict
from typing import Dict, List, Tuple
from dejavu.config.settings import DATABASES
@ -13,13 +13,13 @@ class BaseDatabase(object, metaclass=abc.ABCMeta):
def __init__(self):
super().__init__()
def before_fork(self):
def before_fork(self) -> None:
"""
Called before the database instance is given to the new process
"""
pass
def after_fork(self):
def after_fork(self) -> None:
"""
Called after the database instance has been given to the new process
@ -27,21 +27,21 @@ class BaseDatabase(object, metaclass=abc.ABCMeta):
"""
pass
def setup(self):
def setup(self) -> None:
"""
Called on creation or shortly afterwards.
"""
pass
@abc.abstractmethod
def empty(self):
def empty(self) -> None:
"""
Called when the database should be cleared of all data.
"""
pass
@abc.abstractmethod
def delete_unfingerprinted_songs(self):
def delete_unfingerprinted_songs(self) -> None:
"""
Called to remove any song entries that do not have any fingerprints
associated with them.
@ -49,110 +49,141 @@ class BaseDatabase(object, metaclass=abc.ABCMeta):
pass
@abc.abstractmethod
def get_num_songs(self):
def get_num_songs(self) -> int:
"""
Returns the amount of songs in the database.
Returns the song's count stored.
:return: the amount of songs in the database.
"""
pass
@abc.abstractmethod
def get_num_fingerprints(self):
def get_num_fingerprints(self) -> int:
"""
Returns the number of fingerprints in the database.
Returns the fingerprints' count stored.
:return: the number of fingerprints in the database.
"""
pass
@abc.abstractmethod
def set_song_fingerprinted(self, sid):
def set_song_fingerprinted(self, song_id: int):
"""
Sets a specific song as having all fingerprints in the database.
sid: Song identifier
:param song_id: song identifier.
"""
pass
@abc.abstractmethod
def get_songs(self) -> Dict[str, str]:
def get_songs(self) -> List[Dict[str, str]]:
"""
Returns all fully fingerprinted songs in the database. Result must be a Dictionary.
Returns all fully fingerprinted songs in the database
:return: a dictionary with the songs info.
"""
pass
@abc.abstractmethod
def get_song_by_id(self, sid) -> Dict[str, str]:
def get_song_by_id(self, song_id: int) -> Dict[str, str]:
"""
Return a song by its identifier. Result must be a Dictionary.
sid: Song identifier
Brings the song info from the database.
:param song_id: song identifier.
:return: a song by its identifier. Result must be a Dictionary.
"""
pass
@abc.abstractmethod
def insert(self, hash, sid, offset):
def insert(self, fingerprint: str, song_id: int, offset: int):
"""
Inserts a single fingerprint into the database.
hash: Part of a sha1 hash, in hexadecimal format
sid: Song identifier this fingerprint is off
offset: The offset this hash is from
:param fingerprint: Part of a sha1 hash, in hexadecimal format
:param song_id: Song identifier this fingerprint is off
:param offset: The offset this fingerprint is from.
"""
pass
@abc.abstractmethod
def insert_song(self, song_name):
def insert_song(self, song_name: str, file_hash: str, total_hashes: int) -> int:
"""
Inserts a song name into the database, returns the new
identifier of the song.
song_name: The name of the song.
:param song_name: The name of the song.
:param file_hash: Hash from the fingerprinted file.
:param total_hashes: amount of hashes to be inserted on fingerprint table.
:return: the inserted id.
"""
pass
@abc.abstractmethod
def query(self, hash):
def query(self, fingerprint: str = None) -> List[Tuple]:
"""
Returns all matching fingerprint entries associated with
the given hash as parameter.
the given hash as parameter, if None is passed it returns all entries.
hash: Part of a sha1 hash, in hexadecimal format
:param fingerprint: part of a sha1 hash, in hexadecimal format
:return: a list of fingerprint records stored in the db.
"""
pass
@abc.abstractmethod
def get_iterable_kv_pairs(self):
def get_iterable_kv_pairs(self) -> List[Tuple]:
"""
Returns all fingerprints in the database.
:return: a list containing all fingerprints stored in the db.
"""
pass
@abc.abstractmethod
def insert_hashes(self, sid, hashes, batch=1000):
def insert_hashes(self, song_id: int, hashes: List[Tuple[str, int]], batch_size: int = 1000) -> None:
"""
Insert a multitude of fingerprints.
sid: Song identifier the fingerprints belong to
hashes: A sequence of tuples in the format (hash, offset)
:param song_id: Song identifier the fingerprints belong to
:param hashes: A sequence of tuples in the format (hash, offset)
- hash: Part of a sha1 hash, in hexadecimal format
- offset: Offset this hash was created from/at.
:param batch_size: insert batches.
"""
@abc.abstractmethod
def return_matches(self, hashes):
def return_matches(self, hashes: List[Tuple[str, int]], batch_size: int = 1000) \
-> Tuple[List[Tuple[int, int]], Dict[int, int]]:
"""
Searches the database for pairs of (hash, offset) values.
hashes: A sequence of tuples in the format (hash, offset)
:param hashes: A sequence of tuples in the format (hash, offset)
- hash: Part of a sha1 hash, in hexadecimal format
- offset: Offset this hash was created from/at.
:param batch_size: number of query's batches.
:return: a list of (sid, offset_difference) tuples and a
dictionary with the amount of hashes matched (not considering
duplicated hashes) in each song.
- song id: Song identifier
- offset_difference: (database_offset - sampled_offset)
"""
pass
Returns a sequence of (sid, offset_difference) tuples.
sid: Song identifier
offset_difference: (offset - database_offset)
@abc.abstractmethod
def delete_songs_by_ids(self, song_ids: List[int], batch_size: int = 1000) -> None:
"""
Given a list of song ids it deletes all songs specified and their corresponding fingerprints.
:param song_ids: song ids to be deleted from the database.
:param batch_size: number of query's batches.
"""
pass
def get_database(database_type="mysql"):
def get_database(database_type: str = "mysql") -> BaseDatabase:
"""
Given a database type it returns a database instance for that type.
:param database_type: type of the database.
:return: an instance of BaseDatabase depending on given database_type.
"""
try:
path, db_class_name = DATABASES[database_type]
db_module = importlib.import_module(path)

View file

@ -1,4 +1,8 @@
import abc
from time import time
from typing import Dict, List, Tuple
import numpy as np
from dejavu.config.settings import DEFAULT_FS
@ -8,12 +12,22 @@ class BaseRecognizer(object, metaclass=abc.ABCMeta):
self.dejavu = dejavu
self.Fs = DEFAULT_FS
def _recognize(self, *data):
matches = []
for d in data:
matches.extend(self.dejavu.find_matches(d, Fs=self.Fs))
return self.dejavu.align_matches(matches)
def _recognize(self, *data) -> Tuple[List[Dict[str, any]], int, int, int]:
fingerprint_times = []
hashes = set() # to remove possible duplicated fingerprints we built a set.
for channel in data:
fingerprints, fingerprint_time = self.dejavu.generate_fingerprints(channel, Fs=self.Fs)
fingerprint_times.append(fingerprint_time)
hashes |= set(fingerprints)
matches, dedup_hashes, query_time = self.dejavu.find_matches(hashes)
t = time()
final_results = self.dejavu.align_matches(matches, dedup_hashes, len(hashes))
align_time = time() - t
return final_results, np.sum(fingerprint_times), query_time, align_time
@abc.abstractmethod
def recognize(self):
def recognize(self) -> Dict[str, any]:
pass # base class does nothing

View file

@ -1,4 +1,5 @@
import abc
from typing import Dict, List, Tuple
from dejavu.base_classes.base_database import BaseDatabase
@ -11,13 +12,13 @@ class CommonDatabase(BaseDatabase, metaclass=abc.ABCMeta):
def __init__(self):
super().__init__()
def before_fork(self):
def before_fork(self) -> None:
"""
Called before the database instance is given to the new process
"""
pass
def after_fork(self):
def after_fork(self) -> None:
"""
Called after the database instance has been given to the new process
@ -25,7 +26,7 @@ class CommonDatabase(BaseDatabase, metaclass=abc.ABCMeta):
"""
pass
def setup(self):
def setup(self) -> None:
"""
Called on creation or shortly afterwards.
"""
@ -34,7 +35,7 @@ class CommonDatabase(BaseDatabase, metaclass=abc.ABCMeta):
cur.execute(self.CREATE_FINGERPRINTS_TABLE)
cur.execute(self.DELETE_UNFINGERPRINTED)
def empty(self):
def empty(self) -> None:
"""
Called when the database should be cleared of all data.
"""
@ -44,7 +45,7 @@ class CommonDatabase(BaseDatabase, metaclass=abc.ABCMeta):
self.setup()
def delete_unfingerprinted_songs(self):
def delete_unfingerprinted_songs(self) -> None:
"""
Called to remove any song entries that do not have any fingerprints
associated with them.
@ -52,9 +53,11 @@ class CommonDatabase(BaseDatabase, metaclass=abc.ABCMeta):
with self.cursor() as cur:
cur.execute(self.DELETE_UNFINGERPRINTED)
def get_num_songs(self):
def get_num_songs(self) -> int:
"""
Returns the amount of songs in the database.
Returns the song's count stored.
:return: the amount of songs in the database.
"""
with self.cursor() as cur:
cur.execute(self.SELECT_UNIQUE_SONG_IDS)
@ -62,9 +65,11 @@ class CommonDatabase(BaseDatabase, metaclass=abc.ABCMeta):
return count
def get_num_fingerprints(self):
def get_num_fingerprints(self) -> int:
"""
Returns the number of fingerprints in the database.
Returns the fingerprints' count stored.
:return: the number of fingerprints in the database.
"""
with self.cursor() as cur:
cur.execute(self.SELECT_NUM_FINGERPRINTS)
@ -72,122 +77,155 @@ class CommonDatabase(BaseDatabase, metaclass=abc.ABCMeta):
return count
def set_song_fingerprinted(self, sid):
def set_song_fingerprinted(self, song_id):
"""
Sets a specific song as having all fingerprints in the database.
sid: Song identifier
:param song_id: song identifier.
"""
with self.cursor() as cur:
cur.execute(self.UPDATE_SONG_FINGERPRINTED, (sid,))
cur.execute(self.UPDATE_SONG_FINGERPRINTED, (song_id,))
def get_songs(self):
def get_songs(self) -> List[Dict[str, str]]:
"""
Returns all fully fingerprinted songs in the database. Result must be a Dictionary.
Returns all fully fingerprinted songs in the database
:return: a dictionary with the songs info.
"""
with self.cursor(dictionary=True) as cur:
cur.execute(self.SELECT_SONGS)
for row in cur:
yield row
return list(cur)
def get_song_by_id(self, sid):
def get_song_by_id(self, song_id: int) -> Dict[str, str]:
"""
Return a song by its identifier. Result must be a Dictionary.
sid: Song identifier
Brings the song info from the database.
:param song_id: song identifier.
:return: a song by its identifier. Result must be a Dictionary.
"""
with self.cursor(dictionary=True) as cur:
cur.execute(self.SELECT_SONG, (sid,))
cur.execute(self.SELECT_SONG, (song_id,))
return cur.fetchone()
def insert(self, fingerprint, sid, offset):
def insert(self, fingerprint: str, song_id: int, offset: int):
"""
Inserts a single fingerprint into the database.
fingerprint: Part of a sha1 hash, in hexadecimal format
sid: Song identifier this fingerprint is off
offset: The offset this fingerprint is from
:param fingerprint: Part of a sha1 hash, in hexadecimal format
:param song_id: Song identifier this fingerprint is off
:param offset: The offset this fingerprint is from.
"""
with self.cursor() as cur:
cur.execute(self.INSERT_FINGERPRINT, (fingerprint, sid, offset))
cur.execute(self.INSERT_FINGERPRINT, (fingerprint, song_id, offset))
@abc.abstractmethod
def insert_song(self, song_name):
def insert_song(self, song_name: str, file_hash: str, total_hashes: int) -> int:
"""
Inserts a song name into the database, returns the new
identifier of the song.
song_name: The name of the song.
:param song_name: The name of the song.
:param file_hash: Hash from the fingerprinted file.
:param total_hashes: amount of hashes to be inserted on fingerprint table.
:return: the inserted id.
"""
pass
def query(self, fingerprint):
def query(self, fingerprint: str = None) -> List[Tuple]:
"""
Returns all matching fingerprint entries associated with
the given fingerprint as parameter.
the given hash as parameter, if None is passed it returns all entries.
fingerprint: Part of a sha1 hash, in hexadecimal format
:param fingerprint: part of a sha1 hash, in hexadecimal format
:return: a list of fingerprint records stored in the db.
"""
with self.cursor() as cur:
if fingerprint:
with self.cursor() as cur:
cur.execute(self.SELECT, (fingerprint,))
for sid, offset in cur:
yield (sid, offset)
else: # select all if no key
with self.cursor() as cur:
cur.execute(self.SELECT_ALL)
for sid, offset in cur:
yield (sid, offset)
return list(cur)
def get_iterable_kv_pairs(self):
def get_iterable_kv_pairs(self) -> List[Tuple]:
"""
Returns all fingerprints in the database.
:return: a list containing all fingerprints stored in the db.
"""
return self.query(None)
def insert_hashes(self, sid, hashes, batch=1000):
def insert_hashes(self, song_id: int, hashes: List[Tuple[str, int]], batch_size: int = 1000) -> None:
"""
Insert a multitude of fingerprints.
sid: Song identifier the fingerprints belong to
hashes: A sequence of tuples in the format (hash, offset)
:param song_id: Song identifier the fingerprints belong to
:param hashes: A sequence of tuples in the format (hash, offset)
- hash: Part of a sha1 hash, in hexadecimal format
- offset: Offset this hash was created from/at.
:param batch_size: insert batches.
"""
values = [(sid, hsh, int(offset)) for hsh, offset in hashes]
values = [(song_id, hsh, int(offset)) for hsh, offset in hashes]
with self.cursor() as cur:
for index in range(0, len(hashes), batch):
cur.executemany(self.INSERT_FINGERPRINT, values[index: index + batch])
for index in range(0, len(hashes), batch_size):
cur.executemany(self.INSERT_FINGERPRINT, values[index: index + batch_size])
def return_matches(self, hashes, batch=1000):
def return_matches(self, hashes: List[Tuple[str, int]],
batch_size: int = 1000) -> Tuple[List[Tuple[int, int]], Dict[int, int]]:
"""
Searches the database for pairs of (hash, offset) values.
hashes: A sequence of tuples in the format (hash, offset)
:param hashes: A sequence of tuples in the format (hash, offset)
- hash: Part of a sha1 hash, in hexadecimal format
- offset: Offset this hash was created from/at.
Returns a sequence of (sid, offset_difference) tuples.
sid: Song identifier
offset_difference: (offset - database_offset)
:param batch_size: number of query's batches.
:return: a list of (sid, offset_difference) tuples and a
dictionary with the amount of hashes matched (not considering
duplicated hashes) in each song.
- song id: Song identifier
- offset_difference: (database_offset - sampled_offset)
"""
# Create a dictionary of hash => offset pairs for later lookups
mapper = {}
for hsh, offset in hashes:
mapper[hsh.upper()] = offset
if hsh.upper() in mapper.keys():
mapper[hsh.upper()].append(offset)
else:
mapper[hsh.upper()] = [offset]
# Get an iterable of all the hashes we need
values = list(mapper.keys())
with self.cursor() as cur:
for index in range(0, len(values), batch):
# Create our IN part of the query
query = self.SELECT_MULTIPLE
query = query % ', '.join([self.IN_MATCH] * len(values[index: index + batch]))
# in order to count each hash only once per db offset we use the dic below
dedup_hashes = {}
cur.execute(query, values[index: index + batch])
results = []
with self.cursor() as cur:
for index in range(0, len(values), batch_size):
# Create our IN part of the query
query = self.SELECT_MULTIPLE % ', '.join([self.IN_MATCH] * len(values[index: index + batch_size]))
cur.execute(query, values[index: index + batch_size])
for hsh, sid, offset in cur:
# (sid, db_offset - song_sampled_offset)
yield (sid, offset - mapper[hsh])
if sid not in dedup_hashes.keys():
dedup_hashes[sid] = 1
else:
dedup_hashes[sid] += 1
# we now evaluate all offset for each hash matched
for song_sampled_offset in mapper[hsh]:
results.append((sid, offset - song_sampled_offset))
return results, dedup_hashes
def delete_songs_by_ids(self, song_ids: List[int], batch_size: int = 1000) -> None:
"""
Given a list of song ids it deletes all songs specified and their corresponding fingerprints.
:param song_ids: song ids to be deleted from the database.
:param batch_size: number of query's batches.
"""
with self.cursor() as cur:
for index in range(0, len(song_ids), batch_size):
# Create our IN part of the query
query = self.DELETE_SONGS % ', '.join(['%s'] * len(song_ids[index: index + batch_size]))
cur.execute(query, song_ids[index: index + batch_size])

View file

@ -1,8 +1,26 @@
# Dejavu
# DEJAVU JSON RESPONSE
SONG_ID = "song_id"
SONG_NAME = 'song_name'
CONFIDENCE = 'confidence'
MATCH_TIME = 'match_time'
RESULTS = 'results'
HASHES_MATCHED = 'hashes_matched_in_input'
# Hashes fingerprinted in the db.
FINGERPRINTED_HASHES = 'fingerprinted_hashes_in_db'
# Percentage regarding hashes matched vs hashes fingerprinted in the db.
FINGERPRINTED_CONFIDENCE = 'fingerprinted_confidence'
# Hashes generated from the input.
INPUT_HASHES = 'input_total_hashes'
# Percentage regarding hashes matched vs hashes from the input.
INPUT_CONFIDENCE = 'input_confidence'
TOTAL_TIME = 'total_time'
FINGERPRINT_TIME = 'fingerprint_time'
QUERY_TIME = 'query_time'
ALIGN_TIME = 'align_time'
OFFSET = 'offset'
OFFSET_SECS = 'offset_seconds'
@ -20,6 +38,7 @@ FIELD_SONG_ID = 'song_id'
FIELD_SONGNAME = 'song_name'
FIELD_FINGERPRINTED = "fingerprinted"
FIELD_FILE_SHA1 = 'file_sha1'
FIELD_TOTAL_HASHES = 'total_hashes'
# TABLE FINGERPRINTS
FINGERPRINTS_TABLENAME = "fingerprints"
@ -43,7 +62,7 @@ DEFAULT_OVERLAP_RATIO = 0.5
# Degree to which a fingerprint can be paired with its neighbors --
# higher will cause more fingerprints, but potentially better accuracy.
DEFAULT_FAN_VALUE = 15
DEFAULT_FAN_VALUE = 5 # 15 was the original value.
# Minimum amplitude in spectrogram in order to be considered a peak.
# This can be raised to reduce number of fingerprints, but can negatively
@ -53,7 +72,7 @@ DEFAULT_AMP_MIN = 10
# Number of cells around an amplitude peak in the spectrogram in order
# for Dejavu to consider it a spectral peak. Higher values mean less
# fingerprints and faster matching, but can potentially affect accuracy.
PEAK_NEIGHBORHOOD_SIZE = 20
PEAK_NEIGHBORHOOD_SIZE = 10 # 20 was the original value.
# Thresholds on how close or far fingerprints can be in time in order
# to be paired as a fingerprint. If your max is too low, higher values of

View file

@ -6,8 +6,8 @@ from mysql.connector.errors import DatabaseError
from dejavu.base_classes.common_database import CommonDatabase
from dejavu.config.settings import (FIELD_FILE_SHA1, FIELD_FINGERPRINTED,
FIELD_HASH, FIELD_OFFSET, FIELD_SONG_ID,
FIELD_SONGNAME, FINGERPRINTS_TABLENAME,
SONGS_TABLENAME)
FIELD_SONGNAME, FIELD_TOTAL_HASHES,
FINGERPRINTS_TABLENAME, SONGS_TABLENAME)
class MySQLDatabase(CommonDatabase):
@ -20,6 +20,7 @@ class MySQLDatabase(CommonDatabase):
, `{FIELD_SONGNAME}` VARCHAR(250) NOT NULL
, `{FIELD_FINGERPRINTED}` TINYINT DEFAULT 0
, `{FIELD_FILE_SHA1}` BINARY(20) NOT NULL
, `{FIELD_TOTAL_HASHES}` INT NOT NULL DEFAULT 0
, `date_created` DATETIME NOT NULL DEFAULT CURRENT_TIMESTAMP
, `date_modified` DATETIME NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
, CONSTRAINT `pk_{SONGS_TABLENAME}_{FIELD_SONG_ID}` PRIMARY KEY (`{FIELD_SONG_ID}`)
@ -52,8 +53,8 @@ class MySQLDatabase(CommonDatabase):
"""
INSERT_SONG = f"""
INSERT INTO `{SONGS_TABLENAME}` (`{FIELD_SONGNAME}`,`{FIELD_FILE_SHA1}`)
VALUES (%s, UNHEX(%s));
INSERT INTO `{SONGS_TABLENAME}` (`{FIELD_SONGNAME}`,`{FIELD_FILE_SHA1}`,`{FIELD_TOTAL_HASHES}`)
VALUES (%s, UNHEX(%s), %s);
"""
# SELECTS
@ -72,7 +73,7 @@ class MySQLDatabase(CommonDatabase):
SELECT_ALL = f"SELECT `{FIELD_SONG_ID}`, `{FIELD_OFFSET}` FROM `{FINGERPRINTS_TABLENAME}`;"
SELECT_SONG = f"""
SELECT `{FIELD_SONGNAME}`, HEX(`{FIELD_FILE_SHA1}`) AS `{FIELD_FILE_SHA1}`
SELECT `{FIELD_SONGNAME}`, HEX(`{FIELD_FILE_SHA1}`) AS `{FIELD_FILE_SHA1}`, `{FIELD_TOTAL_HASHES}`
FROM `{SONGS_TABLENAME}`
WHERE `{FIELD_SONG_ID}` = %s;
"""
@ -90,6 +91,8 @@ class MySQLDatabase(CommonDatabase):
`{FIELD_SONG_ID}`
, `{FIELD_SONGNAME}`
, HEX(`{FIELD_FILE_SHA1}`) AS `{FIELD_FILE_SHA1}`
, `{FIELD_TOTAL_HASHES}`
, `date_created`
FROM `{SONGS_TABLENAME}`
WHERE `{FIELD_FINGERPRINTED}` = 1;
"""
@ -98,16 +101,20 @@ class MySQLDatabase(CommonDatabase):
DROP_FINGERPRINTS = f"DROP TABLE IF EXISTS `{FINGERPRINTS_TABLENAME}`;"
DROP_SONGS = f"DROP TABLE IF EXISTS `{SONGS_TABLENAME}`;"
# update
# UPDATE
UPDATE_SONG_FINGERPRINTED = f"""
UPDATE `{SONGS_TABLENAME}` SET `{FIELD_FINGERPRINTED}` = 1 WHERE `{FIELD_SONG_ID}` = %s;
"""
# DELETE
# DELETES
DELETE_UNFINGERPRINTED = f"""
DELETE FROM `{SONGS_TABLENAME}` WHERE `{FIELD_FINGERPRINTED}` = 0;
"""
DELETE_SONGS = f"""
DELETE FROM `{SONGS_TABLENAME}` WHERE `{FIELD_SONG_ID}` IN (%s);
"""
# IN
IN_MATCH = f"UNHEX(%s)"
@ -116,17 +123,23 @@ class MySQLDatabase(CommonDatabase):
self.cursor = cursor_factory(**options)
self._options = options
def after_fork(self):
def after_fork(self) -> None:
# Clear the cursor cache, we don't want any stale connections from
# the previous process.
Cursor.clear_cache()
def insert_song(self, song_name, file_hash):
def insert_song(self, song_name: str, file_hash: str, total_hashes: int) -> int:
"""
Inserts song in the database and returns the ID of the inserted record.
Inserts a song name into the database, returns the new
identifier of the song.
:param song_name: The name of the song.
:param file_hash: Hash from the fingerprinted file.
:param total_hashes: amount of hashes to be inserted on fingerprint table.
:return: the inserted id.
"""
with self.cursor() as cur:
cur.execute(self.INSERT_SONG, (song_name, file_hash))
cur.execute(self.INSERT_SONG, (song_name, file_hash, total_hashes))
return cur.lastrowid
def __getstate__(self):

View file

@ -6,8 +6,8 @@ from psycopg2.extras import DictCursor
from dejavu.base_classes.common_database import CommonDatabase
from dejavu.config.settings import (FIELD_FILE_SHA1, FIELD_FINGERPRINTED,
FIELD_HASH, FIELD_OFFSET, FIELD_SONG_ID,
FIELD_SONGNAME, FINGERPRINTS_TABLENAME,
SONGS_TABLENAME)
FIELD_SONGNAME, FIELD_TOTAL_HASHES,
FINGERPRINTS_TABLENAME, SONGS_TABLENAME)
class PostgreSQLDatabase(CommonDatabase):
@ -20,6 +20,7 @@ class PostgreSQLDatabase(CommonDatabase):
, "{FIELD_SONGNAME}" VARCHAR(250) NOT NULL
, "{FIELD_FINGERPRINTED}" SMALLINT DEFAULT 0
, "{FIELD_FILE_SHA1}" BYTEA
, "{FIELD_TOTAL_HASHES}" INT NOT NULL DEFAULT 0
, "date_created" TIMESTAMP NOT NULL DEFAULT now()
, "date_modified" TIMESTAMP NOT NULL DEFAULT now()
, CONSTRAINT "pk_{SONGS_TABLENAME}_{FIELD_SONG_ID}" PRIMARY KEY ("{FIELD_SONG_ID}")
@ -58,8 +59,8 @@ class PostgreSQLDatabase(CommonDatabase):
"""
INSERT_SONG = f"""
INSERT INTO "{SONGS_TABLENAME}" ("{FIELD_SONGNAME}", "{FIELD_FILE_SHA1}")
VALUES (%s, decode(%s, 'hex'))
INSERT INTO "{SONGS_TABLENAME}" ("{FIELD_SONGNAME}", "{FIELD_FILE_SHA1}","{FIELD_TOTAL_HASHES}")
VALUES (%s, decode(%s, 'hex'), %s)
RETURNING "{FIELD_SONG_ID}";
"""
@ -79,7 +80,10 @@ class PostgreSQLDatabase(CommonDatabase):
SELECT_ALL = f'SELECT "{FIELD_SONG_ID}", "{FIELD_OFFSET}" FROM "{FINGERPRINTS_TABLENAME}";'
SELECT_SONG = f"""
SELECT "{FIELD_SONGNAME}", upper(encode("{FIELD_FILE_SHA1}", 'hex')) AS "{FIELD_FILE_SHA1}"
SELECT
"{FIELD_SONGNAME}"
, upper(encode("{FIELD_FILE_SHA1}", 'hex')) AS "{FIELD_FILE_SHA1}"
, "{FIELD_TOTAL_HASHES}"
FROM "{SONGS_TABLENAME}"
WHERE "{FIELD_SONG_ID}" = %s;
"""
@ -97,6 +101,8 @@ class PostgreSQLDatabase(CommonDatabase):
"{FIELD_SONG_ID}"
, "{FIELD_SONGNAME}"
, upper(encode("{FIELD_FILE_SHA1}", 'hex')) AS "{FIELD_FILE_SHA1}"
, "{FIELD_TOTAL_HASHES}"
, "date_created"
FROM "{SONGS_TABLENAME}"
WHERE "{FIELD_FINGERPRINTED}" = 1;
"""
@ -113,11 +119,15 @@ class PostgreSQLDatabase(CommonDatabase):
WHERE "{FIELD_SONG_ID}" = %s;
"""
# DELETE
# DELETES
DELETE_UNFINGERPRINTED = f"""
DELETE FROM "{SONGS_TABLENAME}" WHERE "{FIELD_FINGERPRINTED}" = 0;
"""
DELETE_SONGS = f"""
DELETE FROM "{SONGS_TABLENAME}" WHERE "{FIELD_SONG_ID}" IN (%s);
"""
# IN
IN_MATCH = f"decode(%s, 'hex')"
@ -126,17 +136,23 @@ class PostgreSQLDatabase(CommonDatabase):
self.cursor = cursor_factory(**options)
self._options = options
def after_fork(self):
def after_fork(self) -> None:
# Clear the cursor cache, we don't want any stale connections from
# the previous process.
Cursor.clear_cache()
def insert_song(self, song_name, file_hash):
def insert_song(self, song_name: str, file_hash: str, total_hashes: int) -> int:
"""
Inserts song in the database and returns the ID of the inserted record.
Inserts a song name into the database, returns the new
identifier of the song.
:param song_name: The name of the song.
:param file_hash: Hash from the fingerprinted file.
:param total_hashes: amount of hashes to be inserted on fingerprint table.
:return: the inserted id.
"""
with self.cursor() as cur:
cur.execute(self.INSERT_SONG, (song_name, file_hash))
cur.execute(self.INSERT_SONG, (song_name, file_hash, total_hashes))
return cur.fetchone()[0]
def __getstate__(self):

View file

@ -1,6 +1,7 @@
import fnmatch
import os
from hashlib import sha1
from typing import List, Tuple
import numpy as np
from pydub import AudioSegment
@ -9,35 +10,47 @@ from pydub.utils import audioop
from dejavu.third_party import wavio
def unique_hash(filepath, blocksize=2**20):
def unique_hash(file_path: str, block_size: int = 2**20) -> str:
""" Small function to generate a hash to uniquely generate
a file. Inspired by MD5 version here:
http://stackoverflow.com/a/1131255/712997
Works with large files.
:param file_path: path to file.
:param block_size: read block size.
:return: a hash in an hexagesimal string form.
"""
s = sha1()
with open(filepath, "rb") as f:
with open(file_path, "rb") as f:
while True:
buf = f.read(blocksize)
buf = f.read(block_size)
if not buf:
break
s.update(buf)
return s.hexdigest().upper()
def find_files(path, extensions):
def find_files(path: str, extensions: List[str]) -> List[Tuple[str, str]]:
"""
Get all files that meet the specified extensions.
:param path: path to a directory with audio files.
:param extensions: file extensions to look for.
:return: a list of tuples with file name and its extension.
"""
# Allow both with ".mp3" and without "mp3" to be used for extensions
extensions = [e.replace(".", "") for e in extensions]
results = []
for dirpath, dirnames, files in os.walk(path):
for extension in extensions:
for f in fnmatch.filter(files, f"*.{extension}"):
p = os.path.join(dirpath, f)
yield (p, extension)
results.append((p, extension))
return results
def read(filename, limit=None):
def read(file_name: str, limit: int = None) -> Tuple[List[List[int]], int, str]:
"""
Reads any file supported by pydub (ffmpeg) and returns the data contained
within. If file reading fails due to input being a 24-bit wav file,
@ -47,11 +60,13 @@ def read(filename, limit=None):
of the file by specifying the `limit` parameter. This is the amount of
seconds from the start of the file.
returns: (channels, samplerate)
:param file_name: file to be read.
:param limit: number of seconds to limit.
:return: tuple list of (channels, sample_rate, content_file_hash).
"""
# pydub does not support 24-bit wav files, use wavio when this occurs
try:
audiofile = AudioSegment.from_file(filename)
audiofile = AudioSegment.from_file(file_name)
if limit:
audiofile = audiofile[:limit * 1000]
@ -64,7 +79,7 @@ def read(filename, limit=None):
audiofile.frame_rate
except audioop.error:
_, _, audiofile = wavio.readwav(filename)
_, _, audiofile = wavio.readwav(file_name)
if limit:
audiofile = audiofile[:limit * 1000]
@ -76,12 +91,12 @@ def read(filename, limit=None):
for chn in audiofile:
channels.append(chn)
return channels, audiofile.frame_rate, unique_hash(filename)
return channels, audiofile.frame_rate, unique_hash(file_name)
def path_to_songname(path):
def get_audio_name_from_path(file_path: str) -> str:
"""
Extracts song name from a filepath. Used to identify which songs
have already been fingerprinted on disk.
Extracts song name from a file path.
:param file_path: path to an audio file.
"""
return os.path.splitext(os.path.basename(path))[0]
return os.path.splitext(os.path.basename(file_path))[0]

View file

@ -93,6 +93,7 @@ def generate_hashes(peaks, fan_value=DEFAULT_FAN_VALUE):
if PEAK_SORT:
peaks.sort(key=itemgetter(1))
hashes = []
for i in range(len(peaks)):
for j in range(1, fan_value):
if (i + j) < len(peaks):
@ -105,4 +106,7 @@ def generate_hashes(peaks, fan_value=DEFAULT_FAN_VALUE):
if MIN_HASH_TIME_DELTA <= t_delta <= MAX_HASH_TIME_DELTA:
h = hashlib.sha1(f"{str(freq1)}|{str(freq2)}|{str(t_delta)}".encode('utf-8'))
yield (h.hexdigest()[0:FINGERPRINT_REDUCTION], t1)
hashes.append((h.hexdigest()[0:FINGERPRINT_REDUCTION], t1))
return hashes

View file

@ -1,24 +1,32 @@
import time
from time import time
from typing import Dict
import dejavu.logic.decoder as decoder
from dejavu.base_classes.base_recognizer import BaseRecognizer
from dejavu.config.settings import (ALIGN_TIME, FINGERPRINT_TIME, QUERY_TIME,
RESULTS, TOTAL_TIME)
class FileRecognizer(BaseRecognizer):
def __init__(self, dejavu):
super().__init__(dejavu)
def recognize_file(self, filename):
frames, self.Fs, file_hash = decoder.read(filename, self.dejavu.limit)
def recognize_file(self, filename: str) -> Dict[str, any]:
channels, self.Fs, _ = decoder.read(filename, self.dejavu.limit)
t = time.time()
matches = self._recognize(*frames)
t = time.time() - t
t = time()
matches, fingerprint_time, query_time, align_time = self._recognize(*channels)
t = time() - t
for match in matches:
match['match_time'] = t
results = {
TOTAL_TIME: t,
FINGERPRINT_TIME: fingerprint_time,
QUERY_TIME: query_time,
ALIGN_TIME: align_time,
RESULTS: matches
}
return matches
return results
def recognize(self, filename):
def recognize(self, filename: str) -> Dict[str, any]:
return self.recognize_file(filename)

View file

@ -12,10 +12,10 @@ import matplotlib.pyplot as plt
import numpy as np
from pydub import AudioSegment
from dejavu.config.settings import (CONFIDENCE, DEFAULT_FS,
DEFAULT_OVERLAP_RATIO, DEFAULT_WINDOW_SIZE,
MATCH_TIME, OFFSET, SONG_NAME)
from dejavu.logic.decoder import path_to_songname
from dejavu.config.settings import (DEFAULT_FS, DEFAULT_OVERLAP_RATIO,
DEFAULT_WINDOW_SIZE, HASHES_MATCHED,
OFFSET, RESULTS, SONG_NAME, TOTAL_TIME)
from dejavu.logic.decoder import get_audio_name_from_path
class DejavuTest:
@ -115,8 +115,8 @@ class DejavuTest:
col = self.get_column_id([x for x in re.findall("[0-9]sec", f) if x in self.test_seconds][0])
# format: XXXX_offset_length.mp3, we also take into account underscores within XXXX
splits = path_to_songname(f).split("_")
song = "_".join(splits[0:len(path_to_songname(f).split("_")) - 2])
splits = get_audio_name_from_path(f).split("_")
song = "_".join(splits[0:len(get_audio_name_from_path(f).split("_")) - 2])
line = self.get_line_id(song)
result = subprocess.check_output([
"python",
@ -138,8 +138,8 @@ class DejavuTest:
result = json.loads(result.decode('utf-8').replace("'", '"').replace(': b"', ':"'))
# which song did we predict? We consider only the first match.
result = result[0]
song_result = result[SONG_NAME]
match = result[RESULTS][0]
song_result = match[SONG_NAME]
log_msg(f'song: {song}')
log_msg(f'song_result: {song_result}')
@ -153,22 +153,22 @@ class DejavuTest:
log_msg('correct match')
print(self.result_match)
self.result_match[line][col] = 'yes'
self.result_query_duration[line][col] = round(result[MATCH_TIME], 3)
self.result_match_confidence[line][col] = result[CONFIDENCE]
self.result_query_duration[line][col] = round(result[TOTAL_TIME], 3)
self.result_match_confidence[line][col] = match[HASHES_MATCHED]
# using replace in f for getting rid of underscores in name
song_start_time = re.findall("_[^_]+", f.replace(song, ""))
song_start_time = song_start_time[0].lstrip("_ ")
result_start_time = round((result[OFFSET] * DEFAULT_WINDOW_SIZE *
result_start_time = round((match[OFFSET] * DEFAULT_WINDOW_SIZE *
DEFAULT_OVERLAP_RATIO) / DEFAULT_FS, 0)
self.result_matching_times[line][col] = int(result_start_time) - int(song_start_time)
if abs(self.result_matching_times[line][col]) == 1:
self.result_matching_times[line][col] = 0
log_msg(f'query duration: {round(result[MATCH_TIME], 3)}')
log_msg(f'confidence: {result[CONFIDENCE]}')
log_msg(f'query duration: {round(result[TOTAL_TIME], 3)}')
log_msg(f'confidence: {match[HASHES_MATCHED]}')
log_msg(f'song start_time: {song_start_time}')
log_msg(f'result start time: {result_start_time}')

View file

@ -1,8 +1,8 @@
import json
from dejavu import Dejavu
from dejavu.logic.recognizer.microphone_recognizer import MicrophoneRecognizer
from dejavu.logic.recognizer.file_recognizer import FileRecognizer
from dejavu.logic.recognizer.microphone_recognizer import MicrophoneRecognizer
# load config from a JSON file (or anything outputting a python dictionary)
with open("dejavu.cnf.SAMPLE") as f:
@ -17,18 +17,26 @@ if __name__ == '__main__':
djv.fingerprint_directory("test", [".wav"])
# Recognize audio from a file
song = djv.recognize(FileRecognizer, "mp3/Josh-Woodward--I-Want-To-Destroy-Something-Beautiful.mp3")
print(f"From file we recognized: {song}\n")
results = djv.recognize(FileRecognizer, "mp3/Josh-Woodward--I-Want-To-Destroy-Something-Beautiful.mp3")
print(f"From file we recognized: {results}\n")
# Or recognize audio from your microphone for `secs` seconds
secs = 5
song = djv.recognize(MicrophoneRecognizer, seconds=secs)
if song is None:
results = djv.recognize(MicrophoneRecognizer, seconds=secs)
if results is None:
print("Nothing recognized -- did you play the song out loud so your mic could hear it? :)")
else:
print(f"From mic with {secs} seconds we recognized: {song}\n")
print(f"From mic with {secs} seconds we recognized: {results}\n")
# Or use a recognizer without the shortcut, in anyway you would like
recognizer = FileRecognizer(djv)
song = recognizer.recognize_file("mp3/Josh-Woodward--I-Want-To-Destroy-Something-Beautiful.mp3")
print(f"No shortcut, we recognized: {song}\n")
results = recognizer.recognize_file("mp3/Josh-Woodward--I-Want-To-Destroy-Something-Beautiful.mp3")
print(f"No shortcut, we recognized: {results}\n")
# To list all fingerprinted songs in the db you can use the following:
# fingerprinted_songs = djv.get_fingerprinted_songs()
# print(fingerprinted_songs)
# And to delete a song or a set of songs you can use the following:
# song_ids_to_delete = [1]
# djv.delete_songs_by_ids(song_ids_to_delete)

View file

@ -5,4 +5,3 @@ scipy==1.3.1
matplotlib==3.1.1
mysql-connector-python==8.0.17
psycopg2==2.8.3

View file

@ -1,4 +1,4 @@
from setuptools import setup, find_packages
from setuptools import find_packages, setup
def parse_requirements(requirements):