import numpy as np import matplotlib.mlab as mlab import matplotlib.pyplot as plt from scipy.ndimage.filters import maximum_filter from scipy.ndimage.morphology import (generate_binary_structure, iterate_structure, binary_erosion) import hashlib from operator import itemgetter IDX_FREQ_I = 0 IDX_TIME_J = 1 DEFAULT_FS = 44100 DEFAULT_WINDOW_SIZE = 4096 DEFAULT_OVERLAP_RATIO = 0.5 DEFAULT_FAN_VALUE = 15 DEFAULT_AMP_MIN = 10 PEAK_NEIGHBORHOOD_SIZE = 20 MIN_HASH_TIME_DELTA = 0 MAX_HASH_TIME_DELTA = 200 def fingerprint(channel_samples, Fs=DEFAULT_FS, wsize=DEFAULT_WINDOW_SIZE, wratio=DEFAULT_OVERLAP_RATIO, fan_value=DEFAULT_FAN_VALUE, amp_min=DEFAULT_AMP_MIN): """ FFT the channel, log transform output, find local maxima, then return locally sensitive hashes. """ # FFT the signal and extract frequency components arr2D = mlab.specgram( channel_samples, NFFT=wsize, Fs=Fs, window=mlab.window_hanning, noverlap=int(wsize * wratio))[0] # apply log transform since specgram() returns linear array arr2D = 10 * np.log10(arr2D) arr2D[arr2D == -np.inf] = 0 # replace infs with zeros # find local maxima local_maxima = get_2D_peaks(arr2D, plot=False, amp_min=amp_min) # return hashes return generate_hashes(local_maxima, fan_value=fan_value) def get_2D_peaks(arr2D, plot=False, amp_min=DEFAULT_AMP_MIN): # http://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.morphology.iterate_structure.html#scipy.ndimage.morphology.iterate_structure struct = generate_binary_structure(2, 1) neighborhood = iterate_structure(struct, PEAK_NEIGHBORHOOD_SIZE) # find local maxima using our fliter shape local_max = maximum_filter(arr2D, footprint=neighborhood) == arr2D background = (arr2D == 0) eroded_background = binary_erosion(background, structure=neighborhood, border_value=1) # Boolean mask of arr2D with True at peaks detected_peaks = local_max - eroded_background # extract peaks amps = arr2D[detected_peaks] j, i = np.where(detected_peaks) # filter peaks amps = amps.flatten() peaks = zip(i, j, amps) peaks_filtered = [x for x in peaks if x[2] > amp_min] # freq, time, amp # get indices for frequency and time frequency_idx = [x[1] for x in peaks_filtered] time_idx = [x[0] for x in peaks_filtered] if plot: # scatter of the peaks fig, ax = plt.subplots() ax.imshow(arr2D) ax.scatter(time_idx, frequency_idx) ax.set_xlabel('Time') ax.set_ylabel('Frequency') ax.set_title("Spectrogram") plt.gca().invert_yaxis() plt.show() return zip(frequency_idx, time_idx) def generate_hashes(peaks, fan_value=DEFAULT_FAN_VALUE): """ Hash list structure: sha1_hash[0:20] time_offset [(e05b341a9b77a51fd26, 32), ... ] """ fingerprinted = set() # to avoid rehashing same pairs peaks.sort(key=itemgetter(1)) for i in range(len(peaks)): for j in range(1, fan_value): if (i + j) < len(peaks) and not (i, i + j) in fingerprinted: freq1 = peaks[i][IDX_FREQ_I] freq2 = peaks[i + j][IDX_FREQ_I] t1 = peaks[i][IDX_TIME_J] t2 = peaks[i + j][IDX_TIME_J] t_delta = t2 - t1 if t_delta >= MIN_HASH_TIME_DELTA and t_delta <= MAX_HASH_TIME_DELTA: h = hashlib.sha1( "%s|%s|%s" % (str(freq1), str(freq2), str(t_delta))) yield (h.hexdigest()[0:20], t1) # ensure we don't repeat hashing fingerprinted.add((i, i + j))