dejavu/dejavu/fingerprint.py
2014-06-26 09:13:30 +01:00

120 lines
3.8 KiB
Python
Executable file

import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
from scipy.ndimage.filters import maximum_filter
from scipy.ndimage.morphology import (generate_binary_structure,
iterate_structure, binary_erosion)
import hashlib
from operator import itemgetter
IDX_FREQ_I = 0
IDX_TIME_J = 1
DEFAULT_FS = 44100
DEFAULT_WINDOW_SIZE = 4096
DEFAULT_OVERLAP_RATIO = 0.5
DEFAULT_FAN_VALUE = 15
DEFAULT_AMP_MIN = 10
PEAK_NEIGHBORHOOD_SIZE = 20
MIN_HASH_TIME_DELTA = 0
MAX_HASH_TIME_DELTA = 200
def fingerprint(channel_samples, Fs=DEFAULT_FS,
wsize=DEFAULT_WINDOW_SIZE,
wratio=DEFAULT_OVERLAP_RATIO,
fan_value=DEFAULT_FAN_VALUE,
amp_min=DEFAULT_AMP_MIN):
"""
FFT the channel, log transform output, find local maxima, then return
locally sensitive hashes.
"""
# FFT the signal and extract frequency components
arr2D = mlab.specgram(
channel_samples,
NFFT=wsize,
Fs=Fs,
window=mlab.window_hanning,
noverlap=int(wsize * wratio))[0]
# apply log transform since specgram() returns linear array
arr2D = 10 * np.log10(arr2D)
arr2D[arr2D == -np.inf] = 0 # replace infs with zeros
# find local maxima
local_maxima = get_2D_peaks(arr2D, plot=False, amp_min=amp_min)
# return hashes
return generate_hashes(local_maxima, fan_value=fan_value)
def get_2D_peaks(arr2D, plot=False, amp_min=DEFAULT_AMP_MIN):
# http://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.morphology.iterate_structure.html#scipy.ndimage.morphology.iterate_structure
struct = generate_binary_structure(2, 1)
neighborhood = iterate_structure(struct, PEAK_NEIGHBORHOOD_SIZE)
# find local maxima using our fliter shape
local_max = maximum_filter(arr2D, footprint=neighborhood) == arr2D
background = (arr2D == 0)
eroded_background = binary_erosion(background, structure=neighborhood,
border_value=1)
# Boolean mask of arr2D with True at peaks
detected_peaks = local_max - eroded_background
# extract peaks
amps = arr2D[detected_peaks]
j, i = np.where(detected_peaks)
# filter peaks
amps = amps.flatten()
peaks = zip(i, j, amps)
peaks_filtered = [x for x in peaks if x[2] > amp_min] # freq, time, amp
# get indices for frequency and time
frequency_idx = [x[1] for x in peaks_filtered]
time_idx = [x[0] for x in peaks_filtered]
if plot:
# scatter of the peaks
fig, ax = plt.subplots()
ax.imshow(arr2D)
ax.scatter(time_idx, frequency_idx)
ax.set_xlabel('Time')
ax.set_ylabel('Frequency')
ax.set_title("Spectrogram")
plt.gca().invert_yaxis()
plt.show()
return zip(frequency_idx, time_idx)
def generate_hashes(peaks, fan_value=DEFAULT_FAN_VALUE):
"""
Hash list structure:
sha1_hash[0:20] time_offset
[(e05b341a9b77a51fd26, 32), ... ]
"""
fingerprinted = set() # to avoid rehashing same pairs
peaks.sort(key=itemgetter(1))
for i in range(len(peaks)):
for j in range(1, fan_value):
if (i + j) < len(peaks) and not (i, i + j) in fingerprinted:
freq1 = peaks[i][IDX_FREQ_I]
freq2 = peaks[i + j][IDX_FREQ_I]
t1 = peaks[i][IDX_TIME_J]
t2 = peaks[i + j][IDX_TIME_J]
t_delta = t2 - t1
if t_delta >= MIN_HASH_TIME_DELTA and t_delta <= MAX_HASH_TIME_DELTA:
h = hashlib.sha1(
"%s|%s|%s" % (str(freq1), str(freq2), str(t_delta)))
yield (h.hexdigest()[0:20], t1)
# ensure we don't repeat hashing
fingerprinted.add((i, i + j))