mirror of
https://github.com/correl/dejavu.git
synced 2024-11-23 11:09:52 +00:00
184 lines
5.9 KiB
Python
184 lines
5.9 KiB
Python
from dejavu.testing import *
|
|
from dejavu import Dejavu
|
|
from optparse import OptionParser
|
|
import matplotlib.pyplot as plt
|
|
import time
|
|
import shutil
|
|
|
|
usage = "usage: %prog [options] TESTING_AUDIOFOLDER"
|
|
parser = OptionParser(usage=usage, version="%prog 1.1")
|
|
parser.add_option("--secs",
|
|
action="store",
|
|
dest="secs",
|
|
default=5,
|
|
type=int,
|
|
help='Number of seconds starting from zero to test')
|
|
parser.add_option("--results",
|
|
action="store",
|
|
dest="results_folder",
|
|
default="./dejavu_test_results",
|
|
help='Sets the path where the results are saved')
|
|
parser.add_option("--temp",
|
|
action="store",
|
|
dest="temp_folder",
|
|
default="./dejavu_temp_testing_files",
|
|
help='Sets the path where the temp files are saved')
|
|
parser.add_option("--log",
|
|
action="store_true",
|
|
dest="log",
|
|
default=True,
|
|
help='Enables logging')
|
|
parser.add_option("--silent",
|
|
action="store_false",
|
|
dest="silent",
|
|
default=False,
|
|
help='Disables printing')
|
|
parser.add_option("--log-file",
|
|
dest="log_file",
|
|
default="results-compare.log",
|
|
help='Set the path and filename of the log file')
|
|
parser.add_option("--padding",
|
|
action="store",
|
|
dest="padding",
|
|
default=10,
|
|
type=int,
|
|
help='Number of seconds to pad choice of place to test from')
|
|
parser.add_option("--seed",
|
|
action="store",
|
|
dest="seed",
|
|
default=None,
|
|
type=int,
|
|
help='Random seed')
|
|
options, args = parser.parse_args()
|
|
test_folder = args[0]
|
|
|
|
# set random seed if set by user
|
|
set_seed(options.seed)
|
|
|
|
# ensure results folder exists
|
|
try:
|
|
os.stat(options.results_folder)
|
|
except:
|
|
os.mkdir(options.results_folder)
|
|
|
|
# set logging
|
|
if options.log:
|
|
logging.basicConfig(filename=options.log_file, level=logging.DEBUG)
|
|
|
|
# set test seconds
|
|
test_seconds = ['%dsec' % i for i in range(1, options.secs + 1, 1)]
|
|
|
|
# generate testing files
|
|
for i in range(1, options.secs + 1, 1):
|
|
generate_test_files(test_folder, options.temp_folder,
|
|
i, padding=options.padding)
|
|
|
|
# scan files
|
|
log_msg("Running Dejavu fingerprinter on files in %s..." % test_folder,
|
|
log=options.log, silent=options.silent)
|
|
|
|
tm = time.time()
|
|
djv = DejavuTest(options.temp_folder, test_seconds)
|
|
log_msg("finished obtaining results from dejavu in %s" % (time.time() - tm),
|
|
log=options.log, silent=options.silent)
|
|
|
|
tests = 1 # djv
|
|
n_secs = len(test_seconds)
|
|
|
|
# set result variables -> 4d variables
|
|
all_match_counter = [[[0 for x in range(tests)] for x in range(3)] for x in range(n_secs)]
|
|
all_matching_times_counter = [[[0 for x in range(tests)] for x in range(2)] for x in range(n_secs)]
|
|
all_query_duration = [[[0 for x in range(tests)] for x in range(djv.n_lines)] for x in range(n_secs)]
|
|
all_match_confidence = [[[0 for x in range(tests)] for x in range(djv.n_lines)] for x in range(n_secs)]
|
|
|
|
# group results by seconds
|
|
for line in range(0, djv.n_lines):
|
|
for col in range(0, djv.n_columns):
|
|
# for dejavu
|
|
all_query_duration[col][line][0] = djv.result_query_duration[line][col]
|
|
all_match_confidence[col][line][0] = djv.result_match_confidence[line][col]
|
|
|
|
djv_match_result = djv.result_match[line][col]
|
|
|
|
if djv_match_result == 'yes':
|
|
all_match_counter[col][0][0] += 1
|
|
elif djv_match_result == 'no':
|
|
all_match_counter[col][1][0] += 1
|
|
else:
|
|
all_match_counter[col][2][0] += 1
|
|
|
|
djv_match_acc = djv.result_matching_times[line][col]
|
|
|
|
if djv_match_acc == 0 and djv_match_result == 'yes':
|
|
all_matching_times_counter[col][0][0] += 1
|
|
elif djv_match_acc != 0:
|
|
all_matching_times_counter[col][1][0] += 1
|
|
|
|
# create plots
|
|
djv.create_plots('Confidence', all_match_confidence, options.results_folder)
|
|
djv.create_plots('Query duration', all_query_duration, options.results_folder)
|
|
|
|
for sec in range(0, n_secs):
|
|
ind = np.arange(3) #
|
|
width = 0.25 # the width of the bars
|
|
|
|
fig = plt.figure()
|
|
ax = fig.add_subplot(111)
|
|
ax.set_xlim([-1 * width, 2.75])
|
|
|
|
means_dvj = [round(x[0] * 100 / djv.n_lines, 1) for x in all_match_counter[sec]]
|
|
rects1 = ax.bar(ind, means_dvj, width, color='r')
|
|
|
|
# add some
|
|
ax.set_ylabel('Matching Percentage')
|
|
ax.set_title('%s Matching Percentage' % test_seconds[sec])
|
|
ax.set_xticks(ind + width)
|
|
|
|
labels = ['yes','no','invalid']
|
|
ax.set_xticklabels( labels )
|
|
|
|
box = ax.get_position()
|
|
ax.set_position([box.x0, box.y0, box.width * 0.75, box.height])
|
|
#ax.legend((rects1[0]), ('Dejavu'), loc='center left', bbox_to_anchor=(1, 0.5))
|
|
autolabeldoubles(rects1,ax)
|
|
plt.grid()
|
|
|
|
fig_name = os.path.join(options.results_folder, "matching_perc_%s.png" % test_seconds[sec])
|
|
fig.savefig(fig_name)
|
|
|
|
for sec in range(0, n_secs):
|
|
ind = np.arange(2) #
|
|
width = 0.25 # the width of the bars
|
|
|
|
fig = plt.figure()
|
|
ax = fig.add_subplot(111)
|
|
ax.set_xlim([-1*width, 1.75])
|
|
|
|
div = all_match_counter[sec][0][0]
|
|
if div == 0 :
|
|
div = 1000000
|
|
|
|
means_dvj = [round(x[0] * 100 / div, 1) for x in all_matching_times_counter[sec]]
|
|
rects1 = ax.bar(ind, means_dvj, width, color='r')
|
|
|
|
# add some
|
|
ax.set_ylabel('Matching Accuracy')
|
|
ax.set_title('%s Matching Times Accuracy' % test_seconds[sec])
|
|
ax.set_xticks(ind + width)
|
|
|
|
labels = ['yes','no']
|
|
ax.set_xticklabels( labels )
|
|
|
|
box = ax.get_position()
|
|
ax.set_position([box.x0, box.y0, box.width * 0.75, box.height])
|
|
|
|
#ax.legend( (rects1[0]), ('Dejavu'), loc='center left', bbox_to_anchor=(1, 0.5))
|
|
autolabeldoubles(rects1,ax)
|
|
|
|
plt.grid()
|
|
|
|
fig_name = os.path.join(options.results_folder, "matching_acc_%s.png" % test_seconds[sec])
|
|
fig.savefig(fig_name)
|
|
|
|
# remove temporary folder
|
|
shutil.rmtree(options.temp_folder)
|