dejavu/dejavu/recognize.py

112 lines
3.1 KiB
Python
Executable file

import dejavu.fingerprint as fingerprint
import dejavu.decoder as decoder
import numpy as np
import pyaudio
import time
class BaseRecognizer(object):
def __init__(self, dejavu):
self.dejavu = dejavu
self.Fs = fingerprint.DEFAULT_FS
def _recognize(self, *data):
matches = []
for d in data:
matches.extend(self.dejavu.find_matches(d, Fs=self.Fs))
return self.dejavu.align_matches(matches)
def recognize(self):
pass # base class does nothing
class FileRecognizer(BaseRecognizer):
def __init__(self, dejavu):
super(FileRecognizer, self).__init__(dejavu)
def recognize_file(self, filename):
frames, self.Fs = decoder.read(filename, self.dejavu.limit)
t = time.time()
match = self._recognize(*frames)
t = time.time() - t
if match:
match['match_time'] = t
return match
def recognize(self, filename):
return self.recognize_file(filename)
class MicrophoneRecognizer(BaseRecognizer):
default_chunksize = 8192
default_format = pyaudio.paInt16
default_channels = 2
default_samplerate = 44100
def __init__(self, dejavu):
super(MicrophoneRecognizer, self).__init__(dejavu)
self.audio = pyaudio.PyAudio()
self.stream = None
self.data = []
self.channels = MicrophoneRecognizer.default_channels
self.chunksize = MicrophoneRecognizer.default_chunksize
self.samplerate = MicrophoneRecognizer.default_samplerate
self.recorded = False
def start_recording(self, channels=default_channels,
samplerate=default_samplerate,
chunksize=default_chunksize):
self.chunksize = chunksize
self.channels = channels
self.recorded = False
self.samplerate = samplerate
if self.stream:
self.stream.stop_stream()
self.stream.close()
self.stream = self.audio.open(
format=self.default_format,
channels=channels,
rate=samplerate,
input=True,
frames_per_buffer=chunksize,
)
self.data = [[] for i in range(channels)]
def process_recording(self):
data = self.stream.read(self.chunksize)
nums = np.fromstring(data, np.int16)
for c in range(self.channels):
self.data[c].extend(nums[c::self.channels])
def stop_recording(self):
self.stream.stop_stream()
self.stream.close()
self.stream = None
self.recorded = True
def recognize_recording(self):
if not self.recorded:
raise NoRecordingError("Recording was not complete/begun")
return self._recognize(*self.data)
def get_recorded_time(self):
return len(self.data[0]) / self.rate
def recognize(self, seconds=10):
self.start_recording()
for i in range(0, int(self.samplerate / self.chunksize
* seconds)):
self.process_recording()
self.stop_recording()
return self.recognize_recording()
class NoRecordingError(Exception):
pass