euler/e012.py

49 lines
1,006 B
Python
Raw Normal View History

from e003 import pfactor
from p054.poker import unique_combinations
def triangle(n):
x = 0
for i in range(n + 1):
x = x + i
return x
def badfactor(n):
f = []
for i in range(n, 0, -1):
if n % i == 0:
f.append(i)
return f
def product(l):
p = 1
for n in l:
p = p * n
return p
def factor(n):
primes = pfactor(n)
factors = []
pow = {}
for p in primes:
if p not in pow.keys():
pow[p] = 0
pow[p] = pow[p] + 1
factors.append(p**pow[p])
for p in [f for f in factors if f < n / 2]:
factors.append(n / p)
if n not in factors:
factors.append(n)
return sorted(set(factors))
if __name__ == '__main__':
i = 1
while True:
i = i + 1
t = triangle(i)
f = factor(t)
print 'Checking triangle', i, t
if len(f) > 500:
break
print 'Triangle number {0} has {1} factors ({2})'.format(t, len(f), f)