Merge branch 'erlang'

This commit is contained in:
Correl Roush 2011-10-10 22:57:03 -04:00
commit ab1b1b95bf
5 changed files with 170 additions and 0 deletions

27
erlang/e001.erl Normal file
View file

@ -0,0 +1,27 @@
% Add all the natural numbers below one thousand that are multiples of 3 or 5.
% If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23.
% Find the sum of all the multiples of 3 or 5 below 1000.
-module(e001).
-export([
main/1
]).
sum(3) ->
0;
sum(Max) ->
N = Max - 1,
if
N rem 3 == 0 ->
A = N;
N rem 5 == 0 ->
A = N;
true ->
A = 0
end,
sum(N) + A.
main(_) ->
io:format("Sum of < 10: ~w~n", [sum(10)]),
io:format("Sum of < 1000: ~w~n", [sum(1000)]).

52
erlang/e002.erl Normal file
View file

@ -0,0 +1,52 @@
% Find the sum of all the even-valued terms in the Fibonacci sequence which do not exceed four million.
% Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be:
% 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
% Find the sum of all the even-valued terms in the sequence which do not exceed four million.
-module(e002).
-export([
main/1,
fibonacci_max/1
]).
fibonacci_max(Max) ->
fibonacci_max_([], Max).
fibonacci_max_([], Max) ->
if
Max < 1 ->
[];
true ->
fibonacci_max_([1], Max)
end;
fibonacci_max_([N], Max) ->
Next = N + N,
if
Max < Next ->
[N];
true ->
fibonacci_max_([Next, N], Max)
end;
fibonacci_max_([N1, N2 | Seq], Max) ->
Next = N1 + N2,
if
Max < Next ->
[N1, N2 | Seq];
true ->
fibonacci_max_([Next, N1, N2 | Seq], Max)
end.
sum_if_even([]) ->
0;
sum_if_even([N | Seq]) ->
if
N rem 2 == 0 ->
N + sum_if_even(Seq);
true ->
sum_if_even(Seq)
end.
main(_) ->
Max = 4000000,
io:format("Sum for fibonacci <= ~w: ~w~n", [Max, sum_if_even(fibonacci_max(Max))]).

36
erlang/e003.erl Normal file
View file

@ -0,0 +1,36 @@
% Find the largest prime factor of a composite number.
% The prime factors of 13195 are 5, 7, 13 and 29.
% What is the largest prime factor of the number 600851475143 ?
-module(e003).
-export([
main/1,
pfactor/1
]).
pfactor(N) ->
pfactor_(N, []).
pfactor_(N, F) ->
Next = pfactor_next(N, 2),
if
Next == N ->
[N | F];
true ->
pfactor_(trunc(N / Next), [Next | F])
end.
pfactor_next(N, Factor) ->
if
Factor == N ->
Factor;
N rem Factor == 0 ->
Factor;
true ->
pfactor_next(N, Factor + 1)
end.
main(_) ->
io:format("Prime Factors of 13195: ~w~n", [pfactor(13195)]),
io:format("Prime Factors of 600851475143: ~w~n", [pfactor(600851475143)]).

30
erlang/e004.erl Normal file
View file

@ -0,0 +1,30 @@
% Find the largest palindrome made from the product of two 3-digit numbers.
% A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 99.
% Find the largest palindrome made from the product of two 3-digit numbers.
-module(e004).
-export([
main/1
]).
product(Min, Max) ->
product(Min, Max, Max, Max, 0).
product(Min, _, N1, _, Product) when N1 < Min ->
Product;
product(Min, Max, N1, N2, Product) when N2 < Min ->
product(Min, Max, N1 - 1, Max, Product);
product(Min, Max, N1, N2, Product) ->
P = trunc(N1 * N2),
S = integer_to_list(trunc(N1 * N2)),
R = lists:reverse(S),
if
S == R, P > Product ->
product(Min, Max, N1, N2 - 1, P);
true ->
product(Min, Max, N1, N2 - 1, Product)
end.
main(_) ->
io:format("Largest palindrome product of 2-digit numbers: ~w~n", [product(10, 99)]),
io:format("Largest palindrome product of 3-digit numbers: ~w~n", [product(100, 999)]).

25
erlang/e005.erl Normal file
View file

@ -0,0 +1,25 @@
% What is the smallest number divisible by each of the numbers 1 to 20?
% 2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder.
% What is the smallest number that is evenly divisible by all of the numbers from 1 to 20?
-module(e005).
-export([
main/1
]).
divisible(N) ->
divisible(N, N, 1).
divisible(_, C, X) when C == 1 ->
X;
divisible(N, C, X) ->
if
X rem C == 0 ->
divisible(N, C - 1, X);
true ->
divisible(N, N, X + 1)
end.
main(_) ->
io:format("Smallest number divisible by 1 to 10: ~w~n", [divisible(10)]),
io:format("Smallest number divisible by 1 to 10: ~w~n", [divisible(20)]).