euler/e035.py

53 lines
1.6 KiB
Python

"""How many circular primes are there below one million?
The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719, are themselves prime.
There are thirteen such primes below 100: 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, and 97.
How many circular primes are there below one million?
"""
from e007 import is_prime, prime_generator
class NotCircular(Exception):
pass
def permutations(items, n):
if n == 0:
yield []
else:
for i in xrange(len(items)):
for cc in permutations(items[:i] + items[i + 1:], n - 1):
yield [items[i]] + cc
def cyclic_rotation(n):
if n < 10:
yield n
else:
s = str(n)
for i in xrange(len(s)):
yield int(s[i:] + s[:i])
def main():
MAX = 1000000
circular_primes = []
print 'Searching for circular primes for p < {0}...'.format(MAX)
for prime in prime_generator():
if prime >= MAX:
break
try:
# Ensure the prime *can* be circular
if prime > 9:
for c in [n for n in str(prime) if n not in ['1', '3', '7', '9']]:
raise NotCircular()
# Check all permutations
for rotation in cyclic_rotation(prime):
if not is_prime(rotation):
raise NotCircular()
circular_primes.append(prime)
except NotCircular:
pass
# Clear all permutations from the list?
print 'Circular Primes ({0}): {1}'.format(len(circular_primes), circular_primes)
if __name__ == '__main__':
main()