
Extreme Tech Seminar

Lisp Macros
Kevin McAllister

September 23, 2015



WHAT?

… a computer language is not just a way of getting a computer to perform
operations but rather that it is a novel formal medium for expressing ideas
about methodology. Thus, programs must be written for people to read,
and only incidentally for machines to execute.

Structure and Interpretation of Computer Programs

Lisp Macros

http://sarabander.github.io/sicp/html/Preface-1e.xhtml##Preface-1e


COMMON LISP

(defun double (x)
(* x 2))

Common Lisp is a general-purpose, multi-paradigm programming language.
It supports a combination of procedural, functional, and object-oriented
programming paradigms.

Common Lisp (wikipedia)

Lisp Macros

https://en.wikipedia.org/wiki/Common_Lisp


WHY COMMON LISP

I’m just working through the examples in
Land Of Lisp by Conrad Barski
Chapter 16

Lisp Macros

http://landoflisp.com


OTHER REASONS

”In Lisp, programs are data, but the implications take a while to sink in.”
– On Lisp by Paul Graham

Lisp Macros

http://www.paulgraham.com/onlisptext.html


SIMPLE EXAMPLE

(defun add (a b)
(let ((x (+ a b)))
(format t "The sum is ~a" x)
x))

Contention the let and all it’s parens is ugly

(defmacro let1 (var val &body body)
`(let ((,var ,val))

,@body))

Lisp Macros



TADA

(defun add (a b)
(let1 (x (+ a b))
(format t "The sum is ~a" x)
x))

Lisp Macros



COMPLEX EXAMPLE 1

Let’s change this
(defun my-length (lst)

(labels ((f (lst acc)
(if lst

(f (cdr lst) (1+ acc))
acc)))

(f lst 0)))

into
(defun my-length (lst)

(recurse (lst lst acc 0)
(split lst

(self tail (1+ acc))
acc)))

Lisp Macros



COMPLEX EXAMPLE 2

Give me a split that can do a thing

(defmacro split (val yes no)
(let1 g (gensym)
`(let1 ,g ,val
(if ,g

(let ((head (car ,g))
(tail (cdr ,g)))

,yes)
,no))))

Hygenic and Anaphoric
g won’t collide
head and tail will be available inside the split.

Lisp Macros



COMPLEX EXAMPLE 3

(defun pairs (lst)
(labels ((f (lst acc)

(split lst
(if tail
(f (cdr tail)

(cons (cons head (car tail)) acc))
(reverse acc))

(reverse acc))))
(f lst nil)))

(pairs '(a b c d e f))
((A . B) (C . D) (E . F))

Lisp Macros



COMPLEX EXAMPLE 4

(defmacro recurse (vars &body body)
(let1 p (pairs vars)
`(labels ((self ,(mapcar #'car p) ,@body))
(self ,@(mapcar #'cdr p)))))

Lisp Macros


	Introduction

