Lisp Macros

Kevin McAllister
September 23, 2015

@ Extreme Tech Seminar I D

WHAT? D

. a computer language is not just a way of getting a computer to perform
operat/ons but rather that it is a novel formal medium for expressing ideas
about methodology. Thus, programs must be written for people to read,
and only incidentally for machines to execute.

@ Structure and Interpretation of Computer Programs

http://sarabander.github.io/sicp/html/Preface-1e.xhtml##Preface-1e

GUMM[]N LISPID

(defun double (x)
(x x 2))

Common Lisp is a general-purpose, multi-paradigm programming language.
It supports a combination of procedural, functional, and object-oriented
programming paradigms.

® Common Lisp (wikipedia)

https://en.wikipedia.org/wiki/Common_Lisp

WHY COMMON LISP D

@® I'm just working through the examples in
Land Of Lisp by Conrad Barski

® Chapter 16

LEA&N TO
PROGRAM

LISP om: cmc AT A TIME!
]

|.IS|] Macros

http://landoflisp.com

OTHER REASONS ID

@® "In Lisp, programs are data, but the implications take a while to sink in’

— On Lisp by Paul Graham

http://www.paulgraham.com/onlisptext.html

SIMPlE EXAMPLE D

(defun add (a b)
(let ((x (+ a b)))
(format t "The sum is ~a" x)

x))

@® Contention the let and all it's parens is ugly

(defmacro letl (var val &body body)
“(let ((,var ,val))
,@body))

TAI]A D

(defun add (a b)
(letl (x (+ a b))
(format t "The sum is ~a" x)

x))

Let's change this

(defun my-length (1st)
(labels ((f (1st acc)
(if 1st
(f (cdr 1st) (1+ acc))
acc)))
(f 1st 0)))

into

(defun my-length (1st)
(recurse (1st 1lst acc 0)
(split 1lst
(self tail (1+ acc))
acc)))

GUMP[EX EXAMPLE 11D

@® Give me a split that can do a thing

(defmacro split (val yes no)
(letl g (gensym)
“(letl ,g ,val
(if ,g
(let ((head (car ,g))
(tail (cdr ,g)))
,yes)
,00))))

@® Hygenic and Anaphoric
® g won't collide

@® head and tail will be available inside the split.

G[lMPlEX EXAMPLE 21D

G[lMPlEX EXAMPLE 3 1D

(defun pairs (1st)
(labels ((f (1lst acc)
(split 1st
(if tail
(f (cdr tail)
(cons (cons head (car tail)) acc))
(reverse acc))
(reverse acc))))
(f 1st nil)))

(pairs '(a b cde £))
((ap . B) (C.D) (E.F)

GUMPlEX EXAMPLE 4 1D

(defmacro recurse (vars &body body)
(letl p (pairs vars)
“(labels ((self ,(mapcar #'car p) ,@body))
(self ,@(mapcar #'cdr p)))))

	Introduction

