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WHAT?

… a computer language is not just a way of getting a computer to perform
operations but rather that it is a novel formal medium for expressing ideas
about methodology. Thus, programs must be written for people to read,
and only incidentally for machines to execute.

Structure and Interpretation of Computer Programs
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http://sarabander.github.io/sicp/html/Preface-1e.xhtml##Preface-1e


COMMON LISP

(defun double (x)
(* x 2))

Common Lisp is a general-purpose, multi-paradigm programming language.
It supports a combination of procedural, functional, and object-oriented
programming paradigms.

Common Lisp (wikipedia)
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https://en.wikipedia.org/wiki/Common_Lisp


WHY COMMON LISP

I’m just working through the examples in
Land Of Lisp by Conrad Barski
Chapter 16
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http://landoflisp.com


OTHER REASONS

”In Lisp, programs are data, but the implications take a while to sink in.”
– On Lisp by Paul Graham

Lisp Macros

http://www.paulgraham.com/onlisptext.html


SIMPLE EXAMPLE

(defun add (a b)
(let ((x (+ a b)))
(format t "The sum is ~a" x)
x))

Contention the let and all it’s parens is ugly

(defmacro let1 (var val &body body)
`(let ((,var ,val))

,@body))
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TADA

(defun add (a b)
(let1 (x (+ a b))
(format t "The sum is ~a" x)
x))
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COMPLEX EXAMPLE 1

Let’s change this
(defun my-length (lst)

(labels ((f (lst acc)
(if lst

(f (cdr lst) (1+ acc))
acc)))

(f lst 0)))

into
(defun my-length (lst)

(recurse (lst lst acc 0)
(split lst

(self tail (1+ acc))
acc)))
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COMPLEX EXAMPLE 2

Give me a split that can do a thing

(defmacro split (val yes no)
(let1 g (gensym)
`(let1 ,g ,val
(if ,g

(let ((head (car ,g))
(tail (cdr ,g)))

,yes)
,no))))

Hygenic and Anaphoric
g won’t collide
head and tail will be available inside the split.
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COMPLEX EXAMPLE 3

(defun pairs (lst)
(labels ((f (lst acc)

(split lst
(if tail
(f (cdr tail)

(cons (cons head (car tail)) acc))
(reverse acc))

(reverse acc))))
(f lst nil)))

(pairs '(a b c d e f))
((A . B) (C . D) (E . F))
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COMPLEX EXAMPLE 4

(defmacro recurse (vars &body body)
(let1 p (pairs vars)
`(labels ((self ,(mapcar #'car p) ,@body))
(self ,@(mapcar #'cdr p)))))
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