1
0
Fork 0
mirror of https://github.com/correl/mage.git synced 2025-04-03 17:00:16 -09:00

AI: game logs improved (docs/wiki, added diff score per command and commands chain)

This commit is contained in:
Oleg Agafonov 2021-09-26 18:43:57 +04:00
parent 42325c7c2e
commit 8418c6a09a

View file

@ -162,13 +162,12 @@ public class ComputerPlayer6 extends ComputerPlayer /*implements Player*/ {
boolean usedStack = false; boolean usedStack = false;
while (actions.peek() != null) { while (actions.peek() != null) {
Ability ability = actions.poll(); Ability ability = actions.poll();
// log example: ===> Act [PlayerA] Action: Cast Blessings of Nature (target 1; target 2) // example: ===> SELECTED ACTION for PlayerA: Play Swamp
logger.info(new StringBuilder("===> Act [") logger.info(String.format("===> SELECTED ACTION for %s: %s",
.append(game.getPlayer(playerId).getName()) getName(),
.append("] Action: ") ability.toString()
.append(ability.toString()) + listTargets(game, ability.getTargets(), " (targeting %s)", "")
.append(listTargets(game, ability.getTargets(), " (targeting %s)", "")) ));
.toString());
if (!ability.getTargets().isEmpty()) { if (!ability.getTargets().isEmpty()) {
for (Target target : ability.getTargets()) { for (Target target : ability.getTargets()) {
for (UUID id : target.getTargets()) { for (UUID id : target.getTargets()) {
@ -478,15 +477,24 @@ public class ComputerPlayer6 extends ComputerPlayer /*implements Player*/ {
SimulationNode2 bestNode = null; SimulationNode2 bestNode = null;
List<Ability> allActions = currentPlayer.simulatePriority(game); List<Ability> allActions = currentPlayer.simulatePriority(game);
optimize(game, allActions); optimize(game, allActions);
int startedScore = GameStateEvaluator2.evaluate(this.getId(), node.getGame()).getTotalScore();
if (logger.isInfoEnabled() if (logger.isInfoEnabled()
&& !allActions.isEmpty() && !allActions.isEmpty()
&& depth == maxDepth) { && depth == maxDepth) {
logger.info("ADDED ACTIONS (" + allActions.size() + ") " + ' ' + allActions); logger.info(String.format("POSSIBLE ACTIONS for %s (%d, started score: %d)%s",
getName(),
allActions.size(),
startedScore,
(actions.isEmpty() ? "" : ":")
));
for (int i = 0; i < allActions.size(); i++) {
logger.info(String.format("-> #%d (%s)", i + 1, allActions.get(i)));
}
} }
int counter = 0; int actionNumber = 0;
int bestValSubNodes = Integer.MIN_VALUE; int bestValSubNodes = Integer.MIN_VALUE;
for (Ability action : allActions) { for (Ability action : allActions) {
counter++; actionNumber++;
if (!COMPUTER_DISABLE_TIMEOUT_IN_GAME_SIMULATIONS if (!COMPUTER_DISABLE_TIMEOUT_IN_GAME_SIMULATIONS
&& Thread.interrupted()) { && Thread.interrupted()) {
Thread.currentThread().interrupt(); Thread.currentThread().interrupt();
@ -504,7 +512,7 @@ public class ComputerPlayer6 extends ComputerPlayer /*implements Player*/ {
} }
if (!sim.checkIfGameIsOver() if (!sim.checkIfGameIsOver()
&& (action.isUsesStack() || action instanceof PassAbility)) { && (action.isUsesStack() || action instanceof PassAbility)) {
// only pass if the last action uses the stack // skip priority for opponents before stack resolve
UUID nextPlayerId = sim.getPlayerList().get(); UUID nextPlayerId = sim.getPlayerList().get();
do { do {
sim.getPlayer(nextPlayerId).pass(game); sim.getPlayer(nextPlayerId).pass(game);
@ -513,48 +521,73 @@ public class ComputerPlayer6 extends ComputerPlayer /*implements Player*/ {
} }
SimulationNode2 newNode = new SimulationNode2(node, sim, action, depth, currentPlayer.getId()); SimulationNode2 newNode = new SimulationNode2(node, sim, action, depth, currentPlayer.getId());
sim.checkStateAndTriggered(); sim.checkStateAndTriggered();
int val; int actionScore;
if (action instanceof PassAbility && sim.getStack().isEmpty()) { if (action instanceof PassAbility && sim.getStack().isEmpty()) {
// Stop to simulate deeper if PassAbility and stack is empty // no more next actions, it's a final score
val = GameStateEvaluator2.evaluate(this.getId(), sim).getTotalScore(); actionScore = GameStateEvaluator2.evaluate(this.getId(), sim).getTotalScore();
} else { } else {
val = addActions(newNode, depth - 1, alpha, beta); // resolve current action and calc all next actions to find best score (return max possible score)
actionScore = addActions(newNode, depth - 1, alpha, beta);
} }
logger.debug("Sim Prio " + BLANKS.substring(0, 2 + (maxDepth - depth) * 3) + '[' + depth + "]#" + counter + " <" + val + "> - (" + action + ") "); logger.debug("Sim Prio " + BLANKS.substring(0, 2 + (maxDepth - depth) * 3) + '[' + depth + "]#" + actionNumber + " <" + actionScore + "> - (" + action + ") ");
// Hints on data:
// * node - started game with executed command (pay and put on stack)
// * newNode - resolved game with resolved command (resolve stack)
// * node.children - rewrites to store only best tree (e.g. contains only final data)
// * node.score - rewrites to store max score (e.g. contains only final data)
if (logger.isInfoEnabled() if (logger.isInfoEnabled()
&& depth >= maxDepth) { && depth >= maxDepth) {
StringBuilder sb = new StringBuilder("Sim Prio [").append(depth).append("] #").append(counter) // show calculated actions and score
.append(" <").append(val).append("> (").append(action) // example: Sim Prio [6] #1 <605> (Play Swamp)
.append(action.isModal() ? " Mode = " + action.getModes().getMode().toString() : "") int currentActionScore = GameStateEvaluator2.evaluate(this.getId(), newNode.getGame()).getTotalScore();
.append(listTargets(game, action.getTargets(), " (targeting %s)", "")).append(')') int diffCurrentAction = currentActionScore - startedScore;
.append(logger.isTraceEnabled() ? " #" + newNode.hashCode() : ""); int diffNextActions = actionScore - startedScore - diffCurrentAction;
logger.info(String.format("Sim Prio [%d] #%d <diff %s, %s> (%s)",
depth,
actionNumber,
printDiffScore(diffCurrentAction),
printDiffScore(diffNextActions),
action
+ (action.isModal() ? " Mode = " + action.getModes().getMode().toString() : "")
+ listTargets(game, action.getTargets(), " (targeting %s)", "")
+ (logger.isTraceEnabled() ? " #" + newNode.hashCode() : "")
));
// collect childs info (next actions chain)
SimulationNode2 logNode = newNode; SimulationNode2 logNode = newNode;
while (logNode.getChildren() != null while (logNode.getChildren() != null
&& !logNode.getChildren().isEmpty()) { && !logNode.getChildren().isEmpty()) {
logNode = logNode.getChildren().get(0); logNode = logNode.getChildren().get(0);
if (logNode.getAbilities() != null if (logNode.getAbilities() != null
&& !logNode.getAbilities().isEmpty()) { && !logNode.getAbilities().isEmpty()) {
sb.append(" -> [").append(logNode.getDepth()).append(']').append(logNode.getAbilities().toString()).append('<').append(logNode.getScore()).append('>'); int logCurrentScore = GameStateEvaluator2.evaluate(this.getId(), logNode.getGame()).getTotalScore();
int logPrevScore = GameStateEvaluator2.evaluate(this.getId(), logNode.getParent().getGame()).getTotalScore();
logger.info(String.format("Sim Prio [%d] -> next action: [%d]%s <diff %s, %s>",
depth,
logNode.getDepth(),
logNode.getAbilities().toString(),
printDiffScore(logCurrentScore - logPrevScore),
printDiffScore(actionScore - logCurrentScore)
));
} }
} }
logger.info(sb);
} }
if (currentPlayer.getId().equals(playerId)) { if (currentPlayer.getId().equals(playerId)) {
if (val > bestValSubNodes) { if (actionScore > bestValSubNodes) {
bestValSubNodes = val; bestValSubNodes = actionScore;
} }
if (depth == maxDepth if (depth == maxDepth
&& action instanceof PassAbility) { && action instanceof PassAbility) {
val = val - PASSIVITY_PENALTY; // passivity penalty actionScore = actionScore - PASSIVITY_PENALTY; // passivity penalty
} }
if (val > alpha if (actionScore > alpha
|| (depth == maxDepth || (depth == maxDepth
&& val == alpha && actionScore == alpha
&& RandomUtil.nextBoolean())) { // Adding random for equal value to get change sometimes && RandomUtil.nextBoolean())) { // Adding random for equal value to get change sometimes
alpha = val; alpha = actionScore;
bestNode = newNode; bestNode = newNode;
bestNode.setScore(val); bestNode.setScore(actionScore);
if (!newNode.getChildren().isEmpty()) { if (!newNode.getChildren().isEmpty()) {
bestNode.setCombat(newNode.getChildren().get(0).getCombat()); bestNode.setCombat(newNode.getChildren().get(0).getCombat());
} }
@ -565,7 +598,7 @@ public class ComputerPlayer6 extends ComputerPlayer /*implements Player*/ {
.stream() .stream()
.map(a -> a.toString() + listTargets(game, a.getTargets(), " (targeting %s)", "")) .map(a -> a.toString() + listTargets(game, a.getTargets(), " (targeting %s)", ""))
.collect(Collectors.joining("; ")); .collect(Collectors.joining("; "));
logger.info("Sim Prio [" + depth + "] -- Saved best node yet <" + bestNode.getScore() + scoreInfo + "> " + abilitiesInfo); logger.info("Sim Prio [" + depth + "] >> BEST action chain found <" + bestNode.getScore() + scoreInfo + "> " + abilitiesInfo);
node.children.clear(); node.children.clear();
node.children.add(bestNode); node.children.add(bestNode);
node.setScore(bestNode.getScore()); node.setScore(bestNode.getScore());
@ -573,22 +606,22 @@ public class ComputerPlayer6 extends ComputerPlayer /*implements Player*/ {
} }
// no need to check other actions // no need to check other actions
if (val == GameStateEvaluator2.WIN_GAME_SCORE) { if (actionScore == GameStateEvaluator2.WIN_GAME_SCORE) {
logger.debug("Sim Prio -- win - break"); logger.debug("Sim Prio -- win - break");
break; break;
} }
} else { } else {
if (val < beta) { if (actionScore < beta) {
beta = val; beta = actionScore;
bestNode = newNode; bestNode = newNode;
bestNode.setScore(val); bestNode.setScore(actionScore);
if (!newNode.getChildren().isEmpty()) { if (!newNode.getChildren().isEmpty()) {
bestNode.setCombat(newNode.getChildren().get(0).getCombat()); bestNode.setCombat(newNode.getChildren().get(0).getCombat());
} }
} }
// no need to check other actions // no need to check other actions
if (val == GameStateEvaluator2.LOSE_GAME_SCORE) { if (actionScore == GameStateEvaluator2.LOSE_GAME_SCORE) {
logger.debug("Sim Prio -- lose - break"); logger.debug("Sim Prio -- lose - break");
break; break;
} }
@ -623,6 +656,14 @@ public class ComputerPlayer6 extends ComputerPlayer /*implements Player*/ {
} }
} }
private String printDiffScore(int score) {
if (score >= 0) {
return "+" + score;
} else {
return "" + score;
}
}
/** /**
* Various AI optimizations for actions. * Various AI optimizations for actions.
* *