%% @author Correl Roush %% %% @doc Riichi Mahjong library. %% %% @headerfile "../include/riichi.hrl" -module(yaku). -include("../include/riichi.hrl"). -export([yakuhai/2, tanyao/2, pinfu/2, iipeikou/2, chanta/2, itsuu/2, chiitoitsu/2, san_shoku_doujun/2, san_shoku_douko/2, san_kan_tsu/2, toi_toi/2, san_an_kou/2, shou_san_gen/2, honrouto/2, honitsu/2, jun_chan/2, ryanpeikou/2, chinitsu/2, kokushi_musou/2, ryuu_iisou/2, dai_san_gen/2]). %% @doc Counts the pons/kans of value tiles in a player's hand. %% Value tiles include all of the dragons, plus the round wind and the player's seat wind. -spec yakuhai(game(), player()) -> integer(). yakuhai(#game{round=Round}, #player{seat=Seat, hand=#hand{melds=Melds}}) -> length(lists:filter(fun(#meld{type=Type, tiles=[T|_]}) -> case {Type, T} of {pair, _} -> false; {chii, _} -> false; {_, #tile{suit=wind, value=Round}} -> true; {_, #tile{suit=wind, value=Seat}} -> true; {_, #tile{suit=dragon}} -> true; _ -> false end end, Melds)). %% @doc Returns true if the hand consists only of simple tiles. %% Terminals, winds and dragons are not allowed. -spec tanyao(game(), player()) -> boolean(). tanyao(#game{}, #player{hand=Hand}) -> not lists:any(fun(T = #tile{}) -> case T#tile.suit of dragon -> true; wind -> true; _ -> lists:member(T#tile.value, [1,9]) end end, riichi_hand:tiles(Hand)). %% @doc Returns true for a no-points hand. %% To qualify for pinfu, the hand must be fully concealed, contain no pons/kans, %% contain no dragons, round winds or seat winds, and must be won on an open wait. -spec pinfu(game(), player()) -> boolean(). pinfu(#game{round=Round}, #player{seat=Seat, hand=Hand=#hand{melds=Melds}, drawn={_, Drawn}}) -> Closed = lists:all(fun(T) -> T#tile.from =:= draw end, riichi_hand:tiles(Hand)), OpenWait = length(riichi_hand:waits(#hand{tiles=riichi_hand:tiles(Hand) -- [Drawn]})) > 1, Chiis = length([M || M = #meld{type=chii} <- Melds]) =:= 4, #meld{type=pair, tiles=[HeadTile,HeadTile]} = riichi_hand:head(Hand), NonValuePair = HeadTile#tile.value =/= Round andalso HeadTile#tile.value =/= Seat andalso HeadTile#tile.suit =/= dragon, Closed and OpenWait and Chiis and NonValuePair. %% @doc Counts unique elements in a list -spec count_unique(list()) -> list({term(), integer()}). count_unique(L) -> Unique = sets:to_list(sets:from_list(L)), [{I, length(lists:filter(fun (X) -> X == I end, L))} || I <- Unique]. %% @doc Returns true for a hand containing two identical straights in the same suit %% Will NOT return true if there are more than two, as this yaku and ryanpeikou %% are mutually exclusive. -spec iipeikou(game(), player()) -> boolean(). iipeikou(#game{}, #player{hand=#hand{melds=Melds}}) -> Chiis = [M || M = #meld{type=chii} <- Melds], Counts = [C || {_, C} <- count_unique(Chiis), C == 2], length(Counts) == 1. %% @doc Returns true for a Chanta hand %% All melds and the pair must include a terminal or honor tile -spec chanta(game(), player()) -> boolean(). chanta(#game{}, #player{hand=#hand{tiles=[], melds=Melds}}) -> Sets = [[{T#tile.suit, T#tile.value} || T <- Tiles] || #meld{tiles=Tiles} <- Melds], ChantaTiles = [{T#tile.suit, T#tile.value} || T <- (?TERMINALS ++ ?HONOURS)], lists:all(fun(Tiles) -> (Tiles -- ChantaTiles =/= Tiles) end, Sets). %% @doc Returns true for an Itsuu hand %% Hand must contain a 1-9 run in one suit -spec itsuu(game(), player()) -> boolean(). itsuu(#game{}, #player{hand=#hand{tiles=[], melds=Melds}}) -> Tiles = lists:flatten([TS || #meld{type=chii, tiles=TS} <- Melds]), Runs = [lists:filter(fun(#tile{suit=S, value=V}) -> S =:= Suit end, Tiles) || Suit <- [man,sou,pin]], lists:any(fun(TS) -> sets:from_list([V || #tile{value=V} <- TS]) =:= sets:from_list(lists:seq(1,9)) end, Runs). %% @doc Returns true if the provided meld is present in the hand %% in all three suits -spec san_shoku(meld(), hand()) -> boolean(). san_shoku(#meld{tiles=Tiles}, #hand{melds=Melds}) -> [V1, V2, V3] = [V || #tile{value=V} <- Tiles], MeldTiles = [TS || #meld{tiles=TS} <- Melds], TSV = fun(#tile{suit=S,value=V}) -> {S,V} end, MeldValues = lists:map(fun(L) -> lists:map(TSV, L) end, MeldTiles), lists:all(fun(M) -> lists:member(M, MeldValues) end, [[{S, V1}, {S, V2}, {S, V3}] || S <- [pin, sou, man]]). %% @doc Returns true for a San shoku doujun hand %% Hand must contain the same sequence in all three suits -spec san_shoku_doujun(game(), player()) -> boolean(). san_shoku_doujun(#game{}, #player{hand=#hand{melds=Melds}=Hand}) -> Chiis = [M || #meld{type=chii} = M <- Melds], lists:any(fun(M) -> san_shoku(M, Hand) end, Chiis). %% @doc Returns true for a San shoku douko hand %% Hand must contain the same triplet in all three suits -spec san_shoku_douko(game(), player()) -> boolean(). san_shoku_douko(#game{}, #player{hand=#hand{melds=Melds}=Hand}) -> Pons = [M || #meld{type=pon} = M <- Melds], lists:any(fun(M) -> san_shoku(M, Hand) end, Pons). %% @doc Returns true for a San kan tsu hand %% Hand must contain three kans san_kan_tsu(#game{}, #player{hand=#hand{melds=Melds}}) -> Kans = [M || M = #meld{type=kan} <- Melds], length(Kans) =:= 3. %% @doc Returns true for a Toi toi hand %% Hand must contain all triplets toi_toi(#game{}, #player{hand=#hand{melds=Melds}}) -> Pons = [M || M = #meld{type=T} <- Melds, lists:member(T, [pon,kan])], length(Pons) =:= 4. %% @doc Returns true for a San an kou hand %% Hand must contain three concealed triplets san_an_kou(#game{}, #player{hand=#hand{melds=Melds}}) -> ClosedPons = [M || M = #meld{type=T} <- Melds, not riichi:is_open(M), lists:member(T, [pon,kan])], length(ClosedPons) =:= 3. %% @doc Returns true for a Shou san gen hand shou_san_gen(#game{}, #player{hand=#hand{melds=Melds}}) -> Pons = [M || M = #meld{type=Type, tiles=[#tile{value=Value}|_]} <- Melds, lists:member(Type, [pon, kan]), lists:member(Value, [red, green, white])], Pairs = [M || M = #meld{type=Type, tiles=[#tile{value=Value}|_]} <- Melds, Type == pair, lists:member(Value, [red, green, white])], length(Pons) == 2 andalso length(Pairs) == 1. %% @doc Returns true for a Honrouto hand honrouto(#game{}, #player{hand=Hand}) -> IsHonour = fun(T) -> lists:member(T, ?HONOURS ++ ?TERMINALS) end, lists:all(IsHonour, riichi_hand:tiles(Hand)). %% @doc Returns true for a 7-pair hand. -spec chiitoitsu(game(), player()) -> boolean(). chiitoitsu(#game{}, #player{hand=#hand{tiles=[], melds=Melds}}) when length(Melds) =:= 7 -> Pairs = [S || S <- Melds, S#meld.type =:= pair], length(Pairs) =:= 7 andalso sets:size(sets:from_list(Pairs)) =:= 7. %% @doc Returns true for a Honitsu hand. honitsu(#game{}, #player{hand=Hand}) -> Tiles = riichi_hand:tiles(Hand), Suits = sets:to_list(sets:from_list([Suit || #tile{suit=Suit} <- Tiles, lists:member(Suit, [pin, sou, man])])), IsHonour = fun(T) -> lists:member(T, ?HONOURS) end, length(Suits) == 1 andalso lists:any(IsHonour, Tiles). %% @doc Returns true for a Jun chan hand. jun_chan(#game{}, #player{hand=#hand{melds=Melds}}) -> IsTerminal = fun(T) -> lists:member(T, ?TERMINALS) end, HasTerminal = fun(#meld{tiles=Tiles}) -> lists:any(IsTerminal, Tiles) end, lists:all(HasTerminal, Melds). %% @doc Returns true for a Ryanpeikou hand. ryanpeikou(#game{}, #player{hand=#hand{melds=Melds}}) -> Chiis = [M || M = #meld{type=chii} <- Melds], Counts = [C || {_, C} <- count_unique(Chiis), C == 2], length(Counts) == 2. %% @doc Returns true for a Chinitsu hand. chinitsu(#game{}, #player{hand=Hand}) -> Tiles = riichi_hand:tiles(Hand), Suits = sets:to_list(sets:from_list([Suit || #tile{suit=Suit} <- Tiles, lists:member(Suit, [pin, sou, man])])), IsHonour = fun(T) -> lists:member(T, ?HONOURS) end, length(Suits) == 1 andalso not lists:any(IsHonour, Tiles). %% @doc Returns true for a 13 Orphans hand. %% The hand must contain one each of every terminal and honour tile, plus one %% additional tile matching any of the others in the hand. -spec kokushi_musou(game(), player()) -> boolean(). kokushi_musou(#game{}, #player{hand=#hand{tiles=Tiles, melds=[#meld{type=pair, tiles=[T,T]}]}}) -> not lists:any(fun(#tile{value=V}) -> lists:member(V, lists:seq(2,8)) end, [T|Tiles]) andalso sets:size(sets:from_list([T|Tiles])) =:= 13; kokushi_musou(#game{}, #player{}) -> false. %% @doc Returns true for an all-green hand. -spec ryuu_iisou(game(), player()) -> boolean(). ryuu_iisou(#game{}, #player{hand=Hand}) -> Greens = sets:from_list([#tile{suit=sou, value=V} || V <- [2,3,4,6,8]] ++ [#tile{suit=dragon, value=green}]), Tiles = sets:from_list(riichi_hand:tiles(Hand)), sets:is_subset(Tiles, Greens). %% @doc Returns true for a Big Three Dragons hand -spec dai_san_gen(game(), player()) -> boolean(). dai_san_gen(#game{}, #player{hand=#hand{melds=Melds}}) -> [green, red, white] =:= lists:usort([V || #meld{type=T, tiles=[#tile{suit=dragon, value=V}|_]} <- Melds, lists:member(T, [pon, kan])]). suu_an_kou(#game{}, #player{hand=#hand{melds=Melds}}) -> Pons = [M || M = #meld{type=T} <- Melds, lists:member(T, [pon, kan]), not riichi:is_open(M)], length(Pons) == 4. tsu_iisou(#game{}, #player{hand=Hand}) -> IsHonour = fun(T) -> lists:member(T, ?HONOURS) end, lists:all(IsHonour, riichi_hand:tiles(Hand)). chinrouto(#game{}, #player{hand=Hand}) -> IsTerminal = fun(T) -> lists:member(T, ?TERMINALS) end, lists:all(IsTerminal, riichi_hand:tiles(Hand)). shou_suushi(#game{}, #player{hand=#hand{melds=Melds}}) -> Pons = [M || M = #meld{type=Type, tiles=[#tile{suit=wind}|_]} <- Melds, lists:member(Type, [pon, kan])], Pairs = [M || M = #meld{type=Type, tiles=[#tile{suit=wind}|_]} <- Melds, Type == pair], length(Pons) == 2 andalso length(Pairs) == 1. dai_suushi(#game{}, #player{hand=#hand{melds=Melds}}) -> Pons = [M || M = #meld{type=Type, tiles=[#tile{suit=wind}|_]} <- Melds, lists:member(Type, [pon, kan])], length(Pons) == 3. chuuren_pooto(#game{} = Game, #player{hand=#hand{melds=Melds} = Hand} = Player) -> Tiles = riichi_hand:tiles(Hand), [#tile{suit=Suit}|_] = Tiles, chinitsu(Game, Player) andalso length([M || M = #meld{type=T, tiles=[#tile{value=1}|_]} <- Melds, lists:member(T, [pon, kan])]) == 1 andalso length([M || M = #meld{type=T, tiles=[#tile{value=9}|_]} <- Melds, lists:member(T, [pon, kan])]) == 1 andalso lists:all(fun(T) -> lists:member(T, Tiles) end, [#tile{value=Value, suit=Suit} || Value <- lists:seq(2,8)]). suu_kan_tsu(#game{}, #player{hand=#hand{melds=Melds}}) -> Kans = [M || M = #meld{type=kan} <- Melds], length(Kans) == 4.