Initial work on section 1.3

This commit is contained in:
Correl Roush 2014-05-30 00:48:50 -04:00
parent a8e6f9f8e5
commit 19b5ac6e99

272
1-3.org Normal file
View file

@ -0,0 +1,272 @@
#+BEGIN_HTML
---
title: 1.3 - Formulating Abstractions with Higher-Order Procedures
layout: org
---
#+END_HTML
* Procedures as Arguments
#+BEGIN_SRC scheme :tangle yes
;; ===================================================================
;; 1.3.1: Procedures as Arguments
;; ===================================================================
(define (sum term a next b)
(if (> a b)
0
(+ (term a)
(sum term (next a) next b))))
(define (inc n) (+ n 1))
(define (cube n) (* n n n))
(define (sum-cubes a b)
(sum cube a inc b))
(define (identity x) x)
(define (sum-integers a b)
(sum identity a inc b))
(define (pi-sum a b)
(define (pi-term x)
(/ 1.0 (* x (+ x 2))))
(define (pi-next x)
(+ x 4))
(sum pi-term a pi-next b))
(define (integral f a b dx)
(define (add-dx x) (+ x dx))
(* (sum f (+ a (/ dx 2.0)) add-dx b)
dx))
#+END_SRC
** Exercise 1.29
Simpson's Rule is a more accurate method of numerical integration
than the method illustrated above. Using Simpson's Rule, the
integral of a function f between a and b is approximated as
#+BEGIN_EXAMPLE
h
- (y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_4 + ... + 2y_(n-2) + 4y_(n-1) + y_n)
3
#+END_EXAMPLE
where h = (b - a)/n, for some even integer n, and y_k = f(a + kh).
(Increasing n increases the accuracy of the approximation.) Define
a procedure that takes as arguments f, a, b, and n and returns the
value of the integral, computed using Simpson's Rule. Use your
procedure to integrate `cube' between 0 and 1 (with n = 100 and n =
1000), and compare the results to those of the `integral' procedure
shown above.
----------------------------------------------------------------------
#+BEGIN_SRC scheme :tangle yes
;; -------------------------------------------------------------------
;; Exercise 1.29
;; -------------------------------------------------------------------
(define (simpson-integral f a b n)
(define h (/ (- b a) n))
(define (y k)
(f (+ a (* k h))))
(define (simpson-term x)
(cond ((= x 0) (y x))
((= x n) (y x))
((even? x) (* 2 (y x)))
((odd? x) (* 4 (y x)))))
(* (/ h 3) (sum simpson-term 0 inc n)))
#+END_SRC
** Exercise 1.30
The `sum' procedure above generates a linear recursion. The
procedure can be rewritten so that the sum is performed
iteratively. Show how to do this by filling in the missing
expressions in the following definition:
#+BEGIN_SRC scheme
(define (sum term a next b)
(define (iter a result)
(if <??>
<??>
(iter <??> <??>)))
(iter <??> <??>))
#+END_SRC
---
#+BEGIN_SRC scheme :tangle yes
;; -------------------------------------------------------------------
;; Exercise 1.30
;; -------------------------------------------------------------------
(define (sum term a next b)
(define (iter a result)
(if (> a b)
result
(iter (next a) (+ (term a) result))))
(iter a 0))
#+END_SRC
** Exercise 1.31
a. The `sum' procedure is only the simplest of a vast number of
similar abstractions that can be captured as higher-order
procedures.(3) Write an analogous procedure called `product'
that returns the product of the values of a function at
points over a given range. Show how to define `factorial' in
terms of `product'. Also use `product' to compute
approximations to [pi] using the formula(4)
#+BEGIN_EXAMPLE
pi 2 * 4 * 4 * 6 * 6 * 8 ...
-- = -------------------------
4 3 * 3 * 5 * 5 * 7 * 7 ...
#+END_EXAMPLE
b. If your `product' procedure generates a recursive process,
write one that generates an iterative process. If it
generates an iterative process, write one that generates a
recursive process.
----------------------------------------------------------------------
#+BEGIN_SRC scheme :tangle yes
;; -------------------------------------------------------------------
;; Example 1.31
;; -------------------------------------------------------------------
(define (product-recursive term a next b)
(if (> a b)
1
(* (term a)
(product-recursive term (next a) next b))))
(define (product-iter term a next b)
(define (iter a result)
(if (> a b)
result
(iter (next a) (* (term a) result))))
(iter a 1))
#+END_SRC
** Exercise 1.32
a. Show that `sum' and `product' (*Note Exercise 1-31::) are
both special cases of a still more general notion called
`accumulate' that combines a collection of terms, using some
general accumulation function:
#+BEGIN_SRC scheme
(accumulate combiner null-value term a next b)
#+END_SRC
`Accumulate' takes as arguments the same term and range
specifications as `sum' and `product', together with a
`combiner' procedure (of two arguments) that specifies how
the current term is to be combined with the accumulation of
the preceding terms and a `null-value' that specifies what
base value to use when the terms run out. Write `accumulate'
and show how `sum' and `product' can both be defined as
simple calls to `accumulate'.
b. If your `accumulate' procedure generates a recursive process,
write one that generates an iterative process. If it
generates an iterative process, write one that generates a
recursive process.
----------------------------------------------------------------------
#+BEGIN_SRC scheme :tangle yes
;; -------------------------------------------------------------------
;; Example 1.32
;; -------------------------------------------------------------------
(define (accumulate-recursive combiner null-value term a next b)
(if (> a b)
null-value
(combiner (term a)
(accumulate-recursive combiner null-value term (next a) next b))))
(define (accumulate-iter combiner null-value term a next b)
(define (iter a result)
(if (> a b)
result
(iter (next a) (combiner (term a) result))))
(iter a null-value))
#+END_SRC
** Exercise 1.33
You can obtain an even more general version of
`accumulate' (*Note Exercise 1-32::) by introducing the notion of
a "filter" on the terms to be combined. That is, combine only
those terms derived from values in the range that satisfy a
specified condition. The resulting `filtered-accumulate'
abstraction takes the same arguments as accumulate, together with
an additional predicate of one argument that specifies the filter.
Write `filtered-accumulate' as a procedure. Show how to express
the following using `filtered-accumulate':
a. the sum of the squares of the prime numbers in the interval a
to b (assuming that you have a `prime?' predicate already
written)
b. the product of all the positive integers less than n that are
relatively prime to n (i.e., all positive integers i < n such
that GCD(i,n) = 1).
----------------------------------------------------------------------
#+BEGIN_SRC scheme :tangle yes
;; -------------------------------------------------------------------
;; Example 1.33
;; -------------------------------------------------------------------
(define (accumulate-filter predicate combiner null-value term a next b)
(define (iter a result)
(cond ((> a b) result)
((predicate a) (iter (next a) (combiner (term a) result)))
(else (iter (next a) result))))
(iter a null-value))
#+END_SRC
* Constructing Procedures Using `Lambda'
** Exercise 1.34:
Suppose we define the procedure
#+BEGIN_SRC scheme
(define (f g)
(g 2))
#+END_SRC
Then we have
#+BEGIN_SRC scheme
(f square)
4
(f (lambda (z) (* z (+ z 1))))
6
#+END_SRC
What happens if we (perversely) ask the interpreter to evaluate
the combination `(f f)'? Explain.
----------------------------------------------------------------------
The call will fail, as ~(g 2)~ will evaluate to the form ~(2 2)~,
which will fail to apply as ~2~ is a number, not a procedure.
#+BEGIN_SRC scheme
(f f)
(f (f 2))
(f (2 2))
;; The object 2 is not applicable.
#+END_SRC
* Procedures as General Methods
* Procedures as Returned Values