#+BEGIN_HTML --- title: 1.3 - Formulating Abstractions with Higher-Order Procedures layout: org --- #+END_HTML * Procedures as Arguments #+BEGIN_SRC scheme :tangle yes ;; =================================================================== ;; 1.3.1: Procedures as Arguments ;; =================================================================== (define (sum term a next b) (if (> a b) 0 (+ (term a) (sum term (next a) next b)))) (define (inc n) (+ n 1)) (define (cube n) (* n n n)) (define (sum-cubes a b) (sum cube a inc b)) (define (identity x) x) (define (sum-integers a b) (sum identity a inc b)) (define (pi-sum a b) (define (pi-term x) (/ 1.0 (* x (+ x 2)))) (define (pi-next x) (+ x 4)) (sum pi-term a pi-next b)) (define (integral f a b dx) (define (add-dx x) (+ x dx)) (* (sum f (+ a (/ dx 2.0)) add-dx b) dx)) #+END_SRC ** Exercise 1.29 Simpson's Rule is a more accurate method of numerical integration than the method illustrated above. Using Simpson's Rule, the integral of a function f between a and b is approximated as #+BEGIN_EXAMPLE h - (y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_4 + ... + 2y_(n-2) + 4y_(n-1) + y_n) 3 #+END_EXAMPLE where h = (b - a)/n, for some even integer n, and y_k = f(a + kh). (Increasing n increases the accuracy of the approximation.) Define a procedure that takes as arguments f, a, b, and n and returns the value of the integral, computed using Simpson's Rule. Use your procedure to integrate `cube' between 0 and 1 (with n = 100 and n = 1000), and compare the results to those of the `integral' procedure shown above. ---------------------------------------------------------------------- #+BEGIN_SRC scheme :tangle yes ;; ------------------------------------------------------------------- ;; Exercise 1.29 ;; ------------------------------------------------------------------- (define (simpson-integral f a b n) (define h (/ (- b a) n)) (define (y k) (f (+ a (* k h)))) (define (simpson-term x) (cond ((= x 0) (y x)) ((= x n) (y x)) ((even? x) (* 2 (y x))) ((odd? x) (* 4 (y x))))) (* (/ h 3) (sum simpson-term 0 inc n))) #+END_SRC ** Exercise 1.30 The `sum' procedure above generates a linear recursion. The procedure can be rewritten so that the sum is performed iteratively. Show how to do this by filling in the missing expressions in the following definition: #+BEGIN_SRC scheme (define (sum term a next b) (define (iter a result) (if (iter ))) (iter )) #+END_SRC --- #+BEGIN_SRC scheme :tangle yes ;; ------------------------------------------------------------------- ;; Exercise 1.30 ;; ------------------------------------------------------------------- (define (sum term a next b) (define (iter a result) (if (> a b) result (iter (next a) (+ (term a) result)))) (iter a 0)) #+END_SRC ** Exercise 1.31 a. The `sum' procedure is only the simplest of a vast number of similar abstractions that can be captured as higher-order procedures.(3) Write an analogous procedure called `product' that returns the product of the values of a function at points over a given range. Show how to define `factorial' in terms of `product'. Also use `product' to compute approximations to [pi] using the formula(4) #+BEGIN_EXAMPLE pi 2 * 4 * 4 * 6 * 6 * 8 ... -- = ------------------------- 4 3 * 3 * 5 * 5 * 7 * 7 ... #+END_EXAMPLE b. If your `product' procedure generates a recursive process, write one that generates an iterative process. If it generates an iterative process, write one that generates a recursive process. ---------------------------------------------------------------------- #+BEGIN_SRC scheme :tangle yes ;; ------------------------------------------------------------------- ;; Example 1.31 ;; ------------------------------------------------------------------- (define (product-recursive term a next b) (if (> a b) 1 (* (term a) (product-recursive term (next a) next b)))) (define (product-iter term a next b) (define (iter a result) (if (> a b) result (iter (next a) (* (term a) result)))) (iter a 1)) #+END_SRC ** Exercise 1.32 a. Show that `sum' and `product' (*Note Exercise 1-31::) are both special cases of a still more general notion called `accumulate' that combines a collection of terms, using some general accumulation function: #+BEGIN_SRC scheme (accumulate combiner null-value term a next b) #+END_SRC `Accumulate' takes as arguments the same term and range specifications as `sum' and `product', together with a `combiner' procedure (of two arguments) that specifies how the current term is to be combined with the accumulation of the preceding terms and a `null-value' that specifies what base value to use when the terms run out. Write `accumulate' and show how `sum' and `product' can both be defined as simple calls to `accumulate'. b. If your `accumulate' procedure generates a recursive process, write one that generates an iterative process. If it generates an iterative process, write one that generates a recursive process. ---------------------------------------------------------------------- #+BEGIN_SRC scheme :tangle yes ;; ------------------------------------------------------------------- ;; Example 1.32 ;; ------------------------------------------------------------------- (define (accumulate-recursive combiner null-value term a next b) (if (> a b) null-value (combiner (term a) (accumulate-recursive combiner null-value term (next a) next b)))) (define (accumulate-iter combiner null-value term a next b) (define (iter a result) (if (> a b) result (iter (next a) (combiner (term a) result)))) (iter a null-value)) #+END_SRC ** Exercise 1.33 You can obtain an even more general version of `accumulate' (*Note Exercise 1-32::) by introducing the notion of a "filter" on the terms to be combined. That is, combine only those terms derived from values in the range that satisfy a specified condition. The resulting `filtered-accumulate' abstraction takes the same arguments as accumulate, together with an additional predicate of one argument that specifies the filter. Write `filtered-accumulate' as a procedure. Show how to express the following using `filtered-accumulate': a. the sum of the squares of the prime numbers in the interval a to b (assuming that you have a `prime?' predicate already written) b. the product of all the positive integers less than n that are relatively prime to n (i.e., all positive integers i < n such that GCD(i,n) = 1). ---------------------------------------------------------------------- #+BEGIN_SRC scheme :tangle yes ;; ------------------------------------------------------------------- ;; Example 1.33 ;; ------------------------------------------------------------------- (define (accumulate-filter predicate combiner null-value term a next b) (define (iter a result) (cond ((> a b) result) ((predicate a) (iter (next a) (combiner (term a) result))) (else (iter (next a) result)))) (iter a null-value)) #+END_SRC * Constructing Procedures Using `Lambda' ** Exercise 1.34: Suppose we define the procedure #+BEGIN_SRC scheme (define (f g) (g 2)) #+END_SRC Then we have #+BEGIN_SRC scheme (f square) 4 (f (lambda (z) (* z (+ z 1)))) 6 #+END_SRC What happens if we (perversely) ask the interpreter to evaluate the combination `(f f)'? Explain. ---------------------------------------------------------------------- The call will fail, as ~(g 2)~ will evaluate to the form ~(2 2)~, which will fail to apply as ~2~ is a number, not a procedure. #+BEGIN_SRC scheme (f f) (f (f 2)) (f (2 2)) ;; The object 2 is not applicable. #+END_SRC * Procedures as General Methods * Procedures as Returned Values