mirror of
https://github.com/correl/sicp.git
synced 2024-11-27 11:09:58 +00:00
105 lines
3 KiB
Org Mode
105 lines
3 KiB
Org Mode
#+TITLE: 2.3 - Symbolic Data
|
|
|
|
* Quotation
|
|
** Exercise 2.53
|
|
What would the interpreter print in response to evaluating each of
|
|
the following expressions?
|
|
|
|
#+BEGIN_SRC scheme
|
|
(list 'a 'b 'c)
|
|
|
|
(list (list 'george))
|
|
|
|
(cdr '((x1 x2) (y1 y2)))
|
|
|
|
(cadr '((x1 x2) (y1 y2)))
|
|
|
|
(pair? (car '(a short list)))
|
|
|
|
(memq 'red '((red shoes) (blue socks)))
|
|
|
|
(memq 'red '(red shoes blue socks))
|
|
#+END_SRC
|
|
|
|
----------------------------------------------------------------------
|
|
|
|
#+BEGIN_SRC scheme :tangle yes
|
|
;; -------------------------------------------------------------------
|
|
;; Exercise 2.53
|
|
;; -------------------------------------------------------------------
|
|
|
|
(list 'a 'b 'c)
|
|
;; (a b c)
|
|
(list (list 'george))
|
|
;; ((george))
|
|
(cdr '((x1 x2) (y1 y2)))
|
|
;; ((y1 y2))
|
|
(cadr '((x1 x2) (y1 y2)))
|
|
;; (y1 y2)
|
|
(pair? (car '(a short list)))
|
|
;; #f
|
|
(memq 'red '((red shoes) (blue socks)))
|
|
;; #f
|
|
(memq 'red '(red shoes blue socks))
|
|
;; (red shoes blue socks)
|
|
#+END_SRC
|
|
** Exercise 2.54
|
|
Two lists are said to be `equal?' if they contain
|
|
equal elements arranged in the same order. For example,
|
|
|
|
#+BEGIN_SRC scheme
|
|
(equal? '(this is a list) '(this is a list))
|
|
#+END_SRC
|
|
|
|
is true, but
|
|
|
|
#+BEGIN_SRC scheme
|
|
(equal? '(this is a list) '(this (is a) list))
|
|
#+END_SRC
|
|
|
|
is false. To be more precise, we can define `equal?' recursively
|
|
in terms of the basic `eq?' equality of symbols by saying that `a'
|
|
and `b' are `equal?' if they are both symbols and the symbols are
|
|
`eq?', or if they are both lists such that `(car a)' is `equal?'
|
|
to `(car b)' and `(cdr a)' is `equal?' to `(cdr b)'. Using this
|
|
idea, implement `equal?' as a procedure.(5)
|
|
|
|
----------------------------------------------------------------------
|
|
|
|
#+BEGIN_SRC scheme :tangle yes
|
|
;; -------------------------------------------------------------------
|
|
;; Exercise 2.54
|
|
;; -------------------------------------------------------------------
|
|
|
|
(define (my-equal? a b)
|
|
(cond ((and (null? a)
|
|
(null? b))
|
|
#t)
|
|
((and (symbol? a)
|
|
(symbol? b))
|
|
(eq? a b))
|
|
((and (pair? a)
|
|
(pair? b))
|
|
(and (eq? (car a) (car b))
|
|
(my-equal? (cdr a) (cdr b))))
|
|
(else #f)))
|
|
#+END_SRC
|
|
|
|
** Exercise 2.55
|
|
Eva Lu Ator types to the interpreter the expression
|
|
|
|
#+BEGIN_SRC scheme
|
|
(car ''abracadabra)
|
|
#+END_SRC
|
|
|
|
To her surprise, the interpreter prints back `quote'. Explain.
|
|
|
|
----------------------------------------------------------------------
|
|
|
|
~'abracadabra~ expands to ~(quote abracadabra)~ Therefore
|
|
~''abracadabra~ expands to ~'(quote abracadabra)~, which expands to
|
|
~(quote (quote abracadabra))~, the car of which is the atom
|
|
~quote~.
|
|
* Example: Symbolic Differentiation
|
|
* Example: Representing Sets
|
|
* Example: Huffman Encoding Trees
|