sicp/2-1.org

226 lines
8.1 KiB
Org Mode

#+BEGIN_HTML
---
title: 2.1 - Introduction to Data Abstraction
layout: org
---
#+END_HTML
* Example: Arithmetic Operations for Rational Numbers
#+begin_src scheme :tangle yes
;; ===================================================================
;; 2.1.1: Example: Arithmetic Operators for Rational Numbers
;; ===================================================================
(define (add-rat x y)
(make-rat (+ (* (numer x) (denom y))
(* (numer y) (denom x)))
(* (denom x) (denom y))))
(define (sub-rat x y)
(make-rat (- (* (numer x) (denom y))
(* (numer y) (denom x)))
(* (denom x) (denom y))))
(define (mul-rat x y)
(make-rat (* (numer x) (numer y))
(* (denom x) (denom y))))
(define (div-rat x y)
(make-rat (* (numer x) (denom y))
(* (denom x) (numer y))))
(define (equal-rat? x y)
(= (* (numer x) (denom y))
(* (numer y) (denom x))))
(define (make-rat n d) (cons n d))
(define (numer x) (car x))
(define (denom x) (cdr x))
(define (print-rat x)
(newline)
(display (numer x))
(display "/")
(display (denom x)))
(define (gcd a b)
(if (= b 0)
a
(gcd b (remainder a b))))
(define (make-rat n d)
(let ((g (gcd n d)))
(cons (/ n g) (/ d g))))
#+end_src
** Exercise 2.1:
Define a better version of `make-rat' that handles
both positive and negative arguments. `Make-rat' should normalize
the sign so that if the rational number is positive, both the
numerator and denominator are positive, and if the rational number
is negative, only the numerator is negative.
----------------------------------------------------------------------
#+begin_src scheme :tangle yes
;; -------------------------------------------------------------------
;; Exercise 2.1
;; -------------------------------------------------------------------
(define (make-rat n d)
(cond ((and (negative? n) (negative? d)) (make-rat (abs n) (abs d)))
((negative? d) (make-rat (- n) (- d)))
(else (let ((g (gcd n d)))
(cons (/ n g) (/ d g))))))
#+end_src
** Exercise 2.2
Consider the problem of representing line segments in a plane.
Each segment is represented as a pair of points: a starting point
and an ending point. Define a constructor `make-segment' and
selectors `start-segment' and `end-segment' that define the
representation of segments in terms of points. Furthermore, a
point can be represented as a pair of numbers: the x coordinate and
the y coordinate. Accordingly, specify a constructor `make-point'
and selectors `x-point' and `y-point' that define this
representation. Finally, using your selectors and constructors,
define a procedure `midpoint-segment' that takes a line segment as
argument and returns its midpoint (the point whose coordinates are
the average of the coordinates of the endpoints). To try your
procedures, you'll need a way to print points:
#+begin_src scheme :tangle yes
;; -------------------------------------------------------------------
;; Excercise 2.2
;; -------------------------------------------------------------------
(define (print-point p)
(newline)
(display "(")
(display (x-point p))
(display ",")
(display (y-point p))
(display ")"))
#+end_src
----------------------------------------------------------------------
#+begin_src scheme :tangle yes
(define make-point cons)
(define x-point car)
(define y-point cdr)
(define (midpoint-segment p1 p2)
(let ((average (lambda (x y) (/ (+ x y) 2))))
(make-point
(average (x-point p1) (x-point p2))
(average (y-point p1) (y-point p2)))))
#+end_src
** Exercise 2.3:
Implement a representation for rectangles in a plane. (Hint: You
may want to make use of *Note Exercise 2-2::.) In terms of your
constructors and selectors, create procedures that compute the
perimeter and the area of a given rectangle. Now implement a
different representation for rectangles. Can you design your
system with suitable abstraction barriers, so that the same
perimeter and area procedures will work using either
representation?
----------------------------------------------------------------------
#+begin_src scheme :tangle yes
;; -------------------------------------------------------------------
;; Exercise 2.3
;; -------------------------------------------------------------------
(define (perimeter-rectangle r)
(+ (* 2 (width-rectangle r))
(* 2 (height-rectangle r))))
(define (area-rectangle r)
(* (width-rectangle r)
(height-rectangle r)))
;; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
;; Hard mode - Expose the 4 points of the rectangle
;; Width and Height have their own abstraction layer
;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(define (width-rectangle r)
(abs (- (x2-rectangle r)
(x1-rectangle r))))
(define (height-rectangle r)
(abs (- (y2-rectangle r)
(y1-rectangle r))))
(define (x1-rectangle r) (x-point (top-left-point-rectangle r)))
(define (x2-rectangle r) (x-point (bottom-right-point-rectangle r)))
(define (y1-rectangle r) (y-point (top-left-point-rectangle r)))
(define (y2-rectangle r) (y-point (bottom-right-point-rectangle r)))
;; -------------------------------------------------------------------
;; Rectangle implementation using two points on a plane
(define make-rectangle cons)
(define top-left-point-rectangle car)
(define bottom-right-point-rectangle cdr)
(define (top-right-point-rectangle r)
(make-point (x-point (top-left-point-rectangle r))
(y-point (bottom-right-point-rectangle r))))
(define (bottom-left-point-rectangle r)
(make-point (x-point (top-left-point-rectangle r))
(y-point (bottom-right-point-rectangle r))))
;; -------------------------------------------------------------------
;; Rectangle implementation using an origin point, width and height
(define (make-rectangle origin width height)
(cons origin (cons width height)))
(define (top-left-point-rectangle r) (car r))
(define (top-right-point-rectangle r)
(let ((x (x-point (car r)))
(y (y-point (car r)))
(width (car (cdr r))))
(make-point (+ x width) y)))
(define (bottom-left-point-rectangle r)
(let ((x (x-point (car r)))
(y (y-point (car r)))
(height (cdr (cdr r))))
(make-point x (+ y height))))
(define (bottom-right-point-rectangle r)
(let ((x (x-point (car r)))
(y (y-point (car r)))
(width (car (cdr r)))
(height (cdr (cdr r))))
(make-point (+ x width) (+ y height))))
;; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
;; Simpler solution - Expose only width + height
;; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
;; -------------------------------------------------------------------
;; Rectangle implementation using two points on a plane
(define make-rectangle cons)
(define (width-rectangle r)
(let ((p1 (car r))
(p2 (cdr r)))
(abs (- (x-point p1)
(x-point p2)))))
(define (height-rectangle r)
(let ((p1 (car r))
(p2 (cdr r)))
(abs (- (y-point p1)
(y-point p2)))))
;; -------------------------------------------------------------------
;; Rectangle implementation using an origin point, width and height
(define (make-rectangle origin width height)
(cons origin (cons width height)))
(define (width-rectangle r) (car (cdr r)))
(define (height-rectangle r) (cdr (cdr r)))
#+end_src